Copy 161 equations to clipboard:
latex
Maple
sympy
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x , 1\right)\\
F_{13}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{15}\! \left(x , y_{0}\right)\\
F_{14}\! \left(x , y_{0}\right) &= y_{0} x\\
F_{15}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y_{0}\right)\\
F_{16}\! \left(x , y_{0}\right) &= F_{13}\! \left(x , y_{0}\right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x , 1\right)\\
F_{19}\! \left(x , y_{0}\right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x , y_{0}\right)\\
F_{20}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x , y_{0}\right)+F_{30}\! \left(x , y_{0}\right)\\
F_{21}\! \left(x \right) &= 0\\
F_{22}\! \left(x , y_{0}\right) &= F_{23}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x , y_{0}\right) &= -\frac{y_{0} \left(F_{24}\! \left(x , 1\right)-F_{24}\! \left(x , y_{0}\right)\right)}{-1+y_{0}}\\
F_{24}\! \left(x , y_{0}\right) &= F_{20}\! \left(x , y_{0}\right)+F_{25}\! \left(x , y_{0}\right)\\
F_{25}\! \left(x , y_{0}\right) &= F_{26}\! \left(x , y_{0}\right)\\
F_{26}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{27}\! \left(x , y_{0}\right)\\
F_{27}\! \left(x , y_{0}\right) &= F_{28}\! \left(x , y_{0}\right)+F_{29}\! \left(x , y_{0}\right)\\
F_{28}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x , y_{0}\right)\\
F_{29}\! \left(x , y_{0}\right) &= F_{15}\! \left(x , y_{0}\right) F_{16}\! \left(x , y_{0}\right)\\
F_{30}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{31}\! \left(x , y_{0}\right)\\
F_{31}\! \left(x , y_{0}\right) &= F_{19}\! \left(x , y_{0}\right)+F_{32}\! \left(x , y_{0}\right)\\
F_{32}\! \left(x , y_{0}\right) &= F_{33}\! \left(x , y_{0}, 1\right)\\
F_{33}\! \left(x , y_{0}, y_{1}\right) &= F_{34}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{34}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{138}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{35}\! \left(x , y_{0} y_{1}\right)\\
F_{35}\! \left(x , y_{0}\right) &= F_{159}\! \left(x , y_{0}\right)+F_{21}\! \left(x \right)+F_{36}\! \left(x , y_{0}\right)\\
F_{36}\! \left(x , y_{0}\right) &= F_{37}\! \left(x , y_{0}\right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x , y_{0}\right) &= F_{38}\! \left(x , y_{0}\right)+F_{49}\! \left(x , y_{0}\right)\\
F_{38}\! \left(x , y_{0}\right) &= F_{16}\! \left(x , y_{0}\right)+F_{39}\! \left(x , y_{0}\right)\\
F_{39}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right)+F_{40}\! \left(x , y_{0}\right)+F_{44}\! \left(x , y_{0}\right)\\
F_{40}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{41}\! \left(x , y_{0}\right)\\
F_{41}\! \left(x , y_{0}\right) &= F_{38}\! \left(x , y_{0}\right)+F_{42}\! \left(x , y_{0}\right)\\
F_{42}\! \left(x , y_{0}\right) &= F_{43}\! \left(x , y_{0}\right)+F_{46}\! \left(x , y_{0}\right)\\
F_{43}\! \left(x , y_{0}\right) &= F_{44}\! \left(x , y_{0}\right)\\
F_{44}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{45}\! \left(x , y_{0}\right)\\
F_{45}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right)+F_{43}\! \left(x , y_{0}\right)\\
F_{46}\! \left(x , y_{0}\right) &= F_{47}\! \left(x , y_{0}\right)\\
F_{47}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{48}\! \left(x , y_{0}\right)\\
F_{48}\! \left(x , y_{0}\right) &= F_{42}\! \left(x , y_{0}\right)\\
F_{49}\! \left(x , y_{0}\right) &= F_{50}\! \left(x , 1, y_{0}\right)\\
F_{50}\! \left(x , y_{0}, y_{1}\right) &= F_{35}\! \left(x , y_{1}\right)+F_{51}\! \left(x , y_{0}, y_{1}\right)\\
F_{51}\! \left(x , y_{0}, y_{1}\right) &= F_{157}\! \left(x , y_{1}, y_{0}\right)+F_{21}\! \left(x \right)+F_{52}\! \left(x , y_{0}, y_{1}\right)+F_{66}\! \left(x , y_{0}, y_{1}\right)\\
F_{52}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{53}\! \left(x , 1, y_{1}\right)-F_{53}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\
F_{53}\! \left(x , y_{0}, y_{1}\right) &= F_{4}\! \left(x \right) F_{54}\! \left(x , y_{0}, y_{1}\right)\\
F_{54}\! \left(x , y_{0}, y_{1}\right) &= F_{51}\! \left(x , y_{0}, y_{1}\right)+F_{55}\! \left(x , y_{0}, y_{1}\right)\\
F_{56}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{55}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\
F_{56}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{57}\! \left(x , y_{1}, y_{0}, y_{2}\right)\\
F_{57}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{14}\! \left(x , y_{2}\right) F_{15}\! \left(x , y_{2}\right) F_{58}\! \left(x , y_{1}\right)\\
F_{58}\! \left(x , y_{0}\right) &= F_{16}\! \left(x , y_{0}\right)+F_{59}\! \left(x , y_{0}\right)\\
F_{59}\! \left(x , y_{0}\right) &= F_{16}\! \left(x , y_{0}\right)+F_{60}\! \left(x , y_{0}\right)\\
F_{60}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right)+F_{61}\! \left(x , y_{0}\right)+F_{63}\! \left(x , y_{0}\right)\\
F_{61}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{62}\! \left(x , y_{0}\right)\\
F_{62}\! \left(x , y_{0}\right) &= F_{16}\! \left(x , y_{0}\right)+F_{60}\! \left(x , y_{0}\right)\\
F_{63}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{64}\! \left(x , y_{0}\right)\\
F_{64}\! \left(x , y_{0}\right) &= F_{16}\! \left(x , y_{0}\right)+F_{65}\! \left(x , y_{0}\right)\\
F_{65}\! \left(x , y_{0}\right) &= F_{63}\! \left(x , y_{0}\right)\\
F_{66}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{67}\! \left(x , y_{0}, y_{1}\right)\\
F_{67}\! \left(x , y_{0}, y_{1}\right) &= F_{50}\! \left(x , y_{0}, y_{1}\right)+F_{68}\! \left(x , y_{0}, y_{1}\right)\\
F_{68}\! \left(x , y_{0}, y_{1}\right) &= F_{69}\! \left(x , y_{0}, 1, y_{1}\right)\\
F_{69}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{70}\! \left(x , 1, y_{0}, y_{1}, y_{2}\right)\\
F_{70}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{150}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right)+F_{71}\! \left(x , y_{0} y_{1}, y_{3}\right)\\
F_{71}\! \left(x , y_{0}, y_{1}\right) &= F_{72}\! \left(x , y_{1}, y_{0}\right)\\
F_{73}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{72}\! \left(x , y_{0} y_{1}, y_{0} y_{2}\right)\\
F_{73}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{14}\! \left(x , y_{1}\right) F_{74}\! \left(x , y_{2}, y_{0}, y_{1}\right)\\
F_{74}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{34}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{75}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{75}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{76}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{83}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{76}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{77}\! \left(x , y_{2}, y_{1}, y_{0}\right)\\
F_{77}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{78}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\
F_{79}\! \left(x , y_{0}, y_{1}\right) &= F_{78}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
F_{79}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{1}\right) F_{16}\! \left(x , y_{1}\right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82} \left(x \right)^{2} F_{4}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{83}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{114}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{84}\! \left(x , y_{0} y_{1}\right)\\
F_{84}\! \left(x , y_{0}\right) &= F_{85}\! \left(x , y_{0}\right)\\
F_{85}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{86}\! \left(x , y_{0}\right)\\
F_{86}\! \left(x , y_{0}\right) &= F_{87}\! \left(x , y_{0}\right)+F_{97}\! \left(x , y_{0}\right)\\
F_{87}\! \left(x , y_{0}\right) &= F_{88}\! \left(x , y_{0}\right)+F_{93}\! \left(x , y_{0}\right)\\
F_{88}\! \left(x , y_{0}\right) &= F_{89}\! \left(x , y_{0}\right)+F_{92}\! \left(x , y_{0}\right)\\
F_{89}\! \left(x , y_{0}\right) &= F_{90}\! \left(x , y_{0}\right)\\
F_{90}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{91}\! \left(x , y_{0}\right)\\
F_{91}\! \left(x , y_{0}\right) &= F_{16}\! \left(x , y_{0}\right)+F_{89}\! \left(x , y_{0}\right)\\
F_{92}\! \left(x , y_{0}\right) &= -\frac{y_{0} \left(F_{35}\! \left(x , 1\right)-F_{35}\! \left(x , y_{0}\right)\right)}{-1+y_{0}}\\
F_{93}\! \left(x , y_{0}\right) &= F_{94}\! \left(x , y_{0}\right)+F_{96}\! \left(x , y_{0}\right)\\
F_{94}\! \left(x , y_{0}\right) &= F_{95}\! \left(x , y_{0}\right)\\
F_{95}\! \left(x , y_{0}\right) &= F_{11}\! \left(x \right) F_{16}\! \left(x , y_{0}\right) F_{80}\! \left(x \right)\\
F_{96}\! \left(x , y_{0}\right) &= -\frac{y_{0} \left(F_{84}\! \left(x , 1\right)-F_{84}\! \left(x , y_{0}\right)\right)}{-1+y_{0}}\\
F_{97}\! \left(x , y_{0}\right) &= F_{103}\! \left(x , y_{0}\right)+F_{98}\! \left(x , y_{0}\right)\\
F_{98}\! \left(x , y_{0}\right) &= F_{94}\! \left(x , y_{0}\right)+F_{99}\! \left(x , y_{0}\right)\\
F_{99}\! \left(x , y_{0}\right) &= -\frac{y_{0} \left(F_{100}\! \left(x , 1\right)-F_{100}\! \left(x , y_{0}\right)\right)}{-1+y_{0}}\\
F_{100}\! \left(x , y_{0}\right) &= F_{101}\! \left(x , y_{0}\right)\\
F_{101}\! \left(x , y_{0}\right) &= F_{102}\! \left(x , y_{0}\right) F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{102}\! \left(x , y_{0}\right) &= F_{100}\! \left(x , y_{0}\right)+F_{35}\! \left(x , y_{0}\right)\\
F_{103}\! \left(x , y_{0}\right) &= F_{104}\! \left(x , y_{0}\right)+F_{110}\! \left(x , y_{0}\right)\\
F_{104}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right)\\
F_{105}\! \left(x , y_{0}\right) &= F_{106}\! \left(x , 1, y_{0}\right)\\
F_{106}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}\right) F_{11}\! \left(x \right) F_{16}\! \left(x , y_{1}\right) F_{80}\! \left(x \right)\\
F_{107}\! \left(x , y_{0}\right) &= F_{108}\! \left(x , y_{0}\right)\\
F_{108}\! \left(x , y_{0}\right) &= F_{109}\! \left(x , y_{0}\right)^{2} F_{14}\! \left(x , y_{0}\right)\\
F_{109}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{107}\! \left(x , y_{0}\right)\\
F_{110}\! \left(x , y_{0}\right) &= -\frac{y_{0} \left(F_{111}\! \left(x , 1\right)-F_{111}\! \left(x , y_{0}\right)\right)}{-1+y_{0}}\\
F_{111}\! \left(x , y_{0}\right) &= F_{112}\! \left(x , y_{0}\right)\\
F_{112}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right) F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{113}\! \left(x , y_{0}\right) &= F_{111}\! \left(x , y_{0}\right)+F_{84}\! \left(x , y_{0}\right)\\
F_{114}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{115}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\
F_{115}\! \left(x , y_{0}, y_{1}\right) &= F_{116}\! \left(x , y_{0}, y_{1}\right)\\
F_{116}\! \left(x , y_{0}, y_{1}\right) &= F_{117}\! \left(x , y_{0}, y_{1}\right)\\
F_{117}\! \left(x , y_{0}, y_{1}\right) &= F_{118}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\
F_{118}\! \left(x , y_{0}, y_{1}\right) &= F_{119}\! \left(x , y_{0}, y_{1}\right)+F_{130}\! \left(x , y_{0}, y_{1}\right)\\
F_{119}\! \left(x , y_{0}, y_{1}\right) &= F_{120}\! \left(x , y_{0}, y_{1}\right)+F_{125}\! \left(x , y_{0}, y_{1}\right)\\
F_{120}\! \left(x , y_{0}, y_{1}\right) &= F_{121}\! \left(x , y_{0}, y_{1}\right)+F_{124}\! \left(x , y_{0}, y_{1}\right)\\
F_{122}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{121}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\
F_{122}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{123}\! \left(x , y_{2}, y_{1}, y_{0}\right)\\
F_{123}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{11}\! \left(x \right) F_{16}\! \left(x , y_{1}\right) F_{16}\! \left(x , y_{2}\right)\\
F_{124}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{71}\! \left(x , 1, y_{1}\right)-F_{71}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\
F_{125}\! \left(x , y_{0}, y_{1}\right) &= F_{126}\! \left(x , y_{0}, y_{1}\right)+F_{129}\! \left(x , y_{0}, y_{1}\right)\\
F_{127}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{126}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\
F_{127}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{128}\! \left(x , y_{2}, y_{1}, y_{0}\right)\\
F_{128}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{11}\! \left(x \right) F_{16}\! \left(x , y_{1}\right) F_{16}\! \left(x , y_{2}\right) F_{80}\! \left(x \right)\\
F_{129}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{116}\! \left(x , 1, y_{1}\right)-F_{116}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\
F_{130}\! \left(x , y_{0}, y_{1}\right) &= F_{131}\! \left(x , y_{0}, y_{1}\right)+F_{139}\! \left(x , y_{0}, y_{1}\right)\\
F_{131}\! \left(x , y_{0}, y_{1}\right) &= F_{126}\! \left(x , y_{0}, y_{1}\right)+F_{132}\! \left(x , y_{0}, y_{1}\right)\\
F_{132}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{133}\! \left(x , 1, y_{1}\right)-F_{133}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\
F_{133}\! \left(x , y_{0}, y_{1}\right) &= F_{134}\! \left(x , y_{0}, y_{1}\right)\\
F_{135}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{134}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\
F_{135}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{136}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{136}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{137}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{137}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{135}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{138}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{138}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{73}\! \left(x , y_{1}, y_{2}, y_{0}\right)\\
F_{139}\! \left(x , y_{0}, y_{1}\right) &= F_{140}\! \left(x , y_{0}, y_{1}\right)+F_{146}\! \left(x , y_{0}, y_{1}\right)\\
F_{140}\! \left(x , y_{0}, y_{1}\right) &= F_{141}\! \left(x , y_{1}, y_{0}\right)\\
F_{141}\! \left(x , y_{0}, y_{1}\right) &= F_{142}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{142}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{143}\! \left(x , y_{1}, y_{0}, y_{2}\right)\\
F_{144}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{143}\! \left(x , y_{0}, y_{1}, y_{0} y_{2}\right)\\
F_{145}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{144}\! \left(x , y_{0}, y_{1} y_{2}, y_{2}\right)\\
F_{145}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{16}\! \left(x , y_{2}\right)^{2} F_{80} \left(x \right)^{2} F_{16}\! \left(x , y_{0}\right)\\
F_{146}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{147}\! \left(x , 1, y_{1}\right)-F_{147}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\
F_{147}\! \left(x , y_{0}, y_{1}\right) &= F_{148}\! \left(x , y_{0}, y_{1}\right)\\
F_{148}\! \left(x , y_{0}, y_{1}\right) &= F_{149}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{149}\! \left(x , y_{0}, y_{1}\right) &= F_{116}\! \left(x , y_{0}, y_{1}\right)+F_{147}\! \left(x , y_{0}, y_{1}\right)\\
F_{150}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{151}\! \left(x , y_{1}, y_{2}, y_{0}, y_{3}\right)\\
F_{151}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{14}\! \left(x , y_{1}\right) F_{152}\! \left(x , y_{2}, y_{0}, y_{1}, y_{3}\right)\\
F_{152}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= \frac{y_{3} \left(F_{153}\! \left(x , y_{0}, y_{1}, y_{2}\right)-F_{153}\! \left(x , y_{0}, y_{1}, \frac{y_{3}}{y_{1}}\right)\right)}{y_{1} y_{2}-y_{3}}\\
F_{153}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{138}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{154}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{154}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{114}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{155}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{155}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{156}\! \left(x , y_{2}, y_{1}, y_{0}\right)\\
F_{156}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{16}\! \left(x , y_{1}\right) F_{16}\! \left(x , y_{2}\right) F_{80}\! \left(x \right)\\
F_{157}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{158}\! \left(x , y_{1}, y_{0}\right)\\
F_{158}\! \left(x , y_{0}, y_{1}\right) &= F_{35}\! \left(x , y_{0}\right)+F_{71}\! \left(x , y_{0}, y_{1}\right)\\
F_{159}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{160}\! \left(x , y_{0}\right)\\
F_{160}\! \left(x , y_{0}\right) &= F_{2}\! \left(x \right)+F_{35}\! \left(x , y_{0}\right)\\
\end{align*}\)