Av(1324, 1342, 3241, 3412)
Generating Function
\(\displaystyle \frac{2 x^{8}-9 x^{6}+29 x^{5}-49 x^{4}+48 x^{3}-27 x^{2}+8 x -1}{\left(2 x -1\right)^{2} \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 20, 63, 183, 497, 1281, 3170, 7598, 17758, 40682, 91721, 204145, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(2 x -1\right)^{2} \left(x -1\right)^{5} F \! \left(x \right)+2 x^{8}-9 x^{6}+29 x^{5}-49 x^{4}+48 x^{3}-27 x^{2}+8 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 183\)
\(\displaystyle a \! \left(7\right) = 497\)
\(\displaystyle a \! \left(8\right) = 1281\)
\(\displaystyle a \! \left(n +2\right) = -4 a \! \left(n \right)+4 a \! \left(n +1\right)-\frac{\left(-1+n \right) \left(n^{3}-17 n^{2}+78 n -192\right)}{24}, \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 183\)
\(\displaystyle a \! \left(7\right) = 497\)
\(\displaystyle a \! \left(8\right) = 1281\)
\(\displaystyle a \! \left(n +2\right) = -4 a \! \left(n \right)+4 a \! \left(n +1\right)-\frac{\left(-1+n \right) \left(n^{3}-17 n^{2}+78 n -192\right)}{24}, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 3+\frac{5 \,2^{n} n}{4}-5 \,2^{n}-\frac{n^{4}}{24}+\frac{5 n^{3}}{12}-\frac{35 n^{2}}{24}+\frac{73 n}{12} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 78 rules.
Found on July 23, 2021.Finding the specification took 10 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 78 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{15}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{54}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= x\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{15}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{15}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{15}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{15}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{31}\! \left(x \right) &= 0\\
F_{32}\! \left(x \right) &= F_{15}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{15}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{15}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{42}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{15}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{15}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{15}\! \left(x \right) F_{16}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{15}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{15}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{12}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{63}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{15}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{15}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{50}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{72}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{15}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{15}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{71}\! \left(x \right)\\
\end{align*}\)