Av(1324, 1342, 3214, 4231)
Generating Function
\(\displaystyle \frac{2 x^{8}-x^{7}-9 x^{6}+30 x^{5}-49 x^{4}+48 x^{3}-27 x^{2}+8 x -1}{\left(2 x -1\right)^{2} \left(-1+x \right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 20, 62, 174, 451, 1103, 2587, 5887, 13106, 28714, 62172, 133436, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(2 x -1\right)^{2} \left(-1+x \right)^{5} F \! \left(x \right)+2 x^{8}-x^{7}-9 x^{6}+30 x^{5}-49 x^{4}+48 x^{3}-27 x^{2}+8 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 62\)
\(\displaystyle a \! \left(6\right) = 174\)
\(\displaystyle a \! \left(7\right) = 451\)
\(\displaystyle a \! \left(8\right) = 1103\)
\(\displaystyle a \! \left(n +2\right) = -4 a \! \left(n \right)+4 a \! \left(n +1\right)-\frac{\left(-1+n \right) \left(n^{3}-9 n^{2}+50 n -168\right)}{24}, \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 62\)
\(\displaystyle a \! \left(6\right) = 174\)
\(\displaystyle a \! \left(7\right) = 451\)
\(\displaystyle a \! \left(8\right) = 1103\)
\(\displaystyle a \! \left(n +2\right) = -4 a \! \left(n \right)+4 a \! \left(n +1\right)-\frac{\left(-1+n \right) \left(n^{3}-9 n^{2}+50 n -168\right)}{24}, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ -3+2^{-1+n} n +\frac{5 \,2^{n}}{4}-\frac{n^{4}}{24}+\frac{n^{3}}{12}-\frac{47 n^{2}}{24}+\frac{23 n}{12} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 62 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 62 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{24}\! \left(x \right) &= 0\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{29}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{57}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{56}\! \left(x \right)\\
\end{align*}\)