Av(1324, 1342, 3214, 3241)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(-1+x \right) \left(7 x^{2}-5 x +1\right)}{\left(x^{2}-3 x +1\right) \left(2 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 210, 644, 1914, 5546, 15748, 44002, 121378, 331396, 897386, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(2 x -1\right)^{2} F \! \left(x \right)+\left(-1+x \right) \left(7 x^{2}-5 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -4 a \! \left(n \right)+16 a \! \left(n +1\right)-17 a \! \left(n +2\right)+7 a \! \left(n +3\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \frac{\left(5+\sqrt{5}\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{5}+\frac{\left(5-\sqrt{5}\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{5}-2^{-1+n} n -2^{n}\)

This specification was found using the strategy pack "Point Placements" and has 26 rules.

Found on January 18, 2022.

Finding the specification took 0 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 26 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{13}\! \left(x \right) &= 0\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{18}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right)\\ \end{align*}\)