Av(1324, 1342, 3214)
Generating Function
\(\displaystyle -\frac{\left(x -1\right) \left(3 x -1\right) \left(2 x -1\right)}{3 x^{4}-14 x^{3}+16 x^{2}-7 x +1}\)
Counting Sequence
1, 1, 2, 6, 21, 76, 274, 978, 3463, 12201, 42869, 150415, 527426, 1848905, 6480722, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(3 x^{4}-14 x^{3}+16 x^{2}-7 x +1\right) F \! \left(x \right)+\left(x -1\right) \left(3 x -1\right) \left(2 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -3 a \! \left(n \right)+14 a \! \left(n +1\right)-16 a \! \left(n +2\right)+7 a \! \left(n +3\right), \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -3 a \! \left(n \right)+14 a \! \left(n +1\right)-16 a \! \left(n +2\right)+7 a \! \left(n +3\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \frac{450 \left(\underset{\alpha =\mathit{RootOf} \left(3 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{491}-\frac{1755 \left(\underset{\alpha =\mathit{RootOf} \left(3 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{491}+\frac{1300 \left(\underset{\alpha =\mathit{RootOf} \left(3 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{491}-\frac{217 \left(\underset{\alpha =\mathit{RootOf} \left(3 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{491}\)
This specification was found using the strategy pack "Point Placements" and has 39 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 39 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{13}\! \left(x \right) &= 0\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{18}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{29}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{30}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{12}\! \left(x \right)\\
\end{align*}\)