Av(1324, 1342, 3142, 4132)
Generating Function
\(\displaystyle -\frac{\left(2 x -1+\sqrt{-4 x +1}\right) \left(2 x -1\right)}{2 x^{2} \left(x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 68, 233, 805, 2807, 9879, 35073, 125513, 452389, 1641029, 5986994, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{2} x^{2} F \left(x
\right)^{2}+\left(x -1\right) \left(2 x -1\right)^{2} F \! \left(x \right)+\left(2 x -1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = \frac{4 \left(3+2 n \right) a \! \left(n \right)}{5+n}+\frac{\left(25+7 n \right) a \! \left(2+n \right)}{5+n}-\frac{2 \left(16+7 n \right) a \! \left(n +1\right)}{5+n}, \quad n \geq 3\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = \frac{4 \left(3+2 n \right) a \! \left(n \right)}{5+n}+\frac{\left(25+7 n \right) a \! \left(2+n \right)}{5+n}-\frac{2 \left(16+7 n \right) a \! \left(n +1\right)}{5+n}, \quad n \geq 3\)
This specification was found using the strategy pack "Point Placements" and has 18 rules.
Found on July 23, 2021.Finding the specification took 4 seconds.
Copy 18 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{12}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{9} \left(x \right)^{2} F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{9} \left(x \right)^{2} F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
\end{align*}\)