Av(1324, 1342, 3142)
Generating Function
\(\displaystyle \frac{-x \sqrt{1-4 x}-4 x^{2}+9 x -2}{2 x^{3}-8 x^{2}+10 x -2}\)
Counting Sequence
1, 1, 2, 6, 21, 78, 298, 1157, 4539, 17936, 71251, 284188, 1137076, 4561093, 18333337, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-4 x^{2}+5 x -1\right) F \left(x
\right)^{2}+\left(-1+4 x \right) \left(x -2\right) F \! \left(x \right)-1+4 x = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -\frac{2 \left(3+2 n \right) a \! \left(n \right)}{3+n}+\frac{3 \left(7+3 n \right) a \! \left(3+n \right)}{3+n}+\frac{\left(27+17 n \right) a \! \left(n +1\right)}{3+n}-\frac{6 \left(7+4 n \right) a \! \left(n +2\right)}{3+n}, \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -\frac{2 \left(3+2 n \right) a \! \left(n \right)}{3+n}+\frac{3 \left(7+3 n \right) a \! \left(3+n \right)}{3+n}+\frac{\left(27+17 n \right) a \! \left(n +1\right)}{3+n}-\frac{6 \left(7+4 n \right) a \! \left(n +2\right)}{3+n}, \quad n \geq 4\)
This specification was found using the strategy pack "Point Placements" and has 13 rules.
Found on July 23, 2021.Finding the specification took 1 seconds.
Copy 13 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7} \left(x \right)^{2} F_{10}\! \left(x \right) F_{11}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{7} \left(x \right)^{2} F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= x\\
F_{11}\! \left(x \right) &= \frac{F_{12}\! \left(x \right)}{F_{10}\! \left(x \right)}\\
F_{12}\! \left(x \right) &= F_{2}\! \left(x \right)\\
\end{align*}\)