Av(1324, 1342, 2314, 2431)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(x -1\right) \left(7 x^{2}-5 x +1\right)}{\left(x^{2}-3 x +1\right) \left(2 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 210, 644, 1914, 5546, 15748, 44002, 121378, 331396, 897386, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(2 x -1\right)^{2} F \! \left(x \right)+\left(x -1\right) \left(7 x^{2}-5 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -4 a \! \left(n \right)+16 a \! \left(n +1\right)-17 a \! \left(n +2\right)+7 a \! \left(n +3\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \frac{\left(5+\sqrt{5}\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{5}+\frac{\left(5-\sqrt{5}\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{5}-2^{-1+n} n -2^{n}\)

This specification was found using the strategy pack "Point Placements" and has 58 rules.

Found on July 23, 2021.

Finding the specification took 5 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 58 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{7}\! \left(x \right) &= x\\ F_{8}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{16}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{24}\! \left(x \right) &= 0\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{19}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{30}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{32}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= 2 F_{24}\! \left(x \right)+F_{37}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{35}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{46}\! \left(x \right) &= 2 F_{24}\! \left(x \right)+F_{47}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{42}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{53}\! \left(x \right)\\ \end{align*}\)