Av(1324, 1342, 2143, 4231)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{8}-3 x^{7}+x^{6}+9 x^{5}-21 x^{4}+28 x^{3}-20 x^{2}+7 x -1}{\left(2 x -1\right)^{2} \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 20, 62, 173, 445, 1081, 2524, 5733, 12771, 28053, 60986, 131537, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right)^{2} \left(x -1\right)^{4} F \! \left(x \right)+x^{8}-3 x^{7}+x^{6}+9 x^{5}-21 x^{4}+28 x^{3}-20 x^{2}+7 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 62\)
\(\displaystyle a \! \left(6\right) = 173\)
\(\displaystyle a \! \left(7\right) = 445\)
\(\displaystyle a \! \left(8\right) = 1081\)
\(\displaystyle a \! \left(n +2\right) = -4 a \! \left(n \right)+4 a \! \left(n +1\right)-\frac{\left(n +1\right) \left(n^{2}-4 n -6\right)}{6}, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ \frac{\left(27 n +9\right) 2^{n}}{48}-\frac{n^{3}}{6}-\frac{n^{2}}{2}-\frac{n}{3}+1 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 55 rules.

Found on July 23, 2021.

Finding the specification took 9 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 55 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= x\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{14}\! \left(x \right) F_{17}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{17}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{17}\! \left(x \right) F_{21}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{14}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{17}\! \left(x \right) F_{35}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{35}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{32}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{17}\! \left(x \right) F_{44}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{44}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{17}\! \left(x \right) F_{39}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{32}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{17}\! \left(x \right) F_{21}\! \left(x \right) F_{44}\! \left(x \right)\\ \end{align*}\)