Av(1324, 1342, 2143, 4132)
Generating Function
\(\displaystyle \frac{\left(x -2\right) \left(x -1\right)^{2} \sqrt{1-4 x}-5 x^{3}+8 x^{2}-7 x +2}{2 x \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 217, 720, 2424, 8286, 28721, 100766, 357227, 1277776, 4605967, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{4} F \left(x
\right)^{2}+\left(5 x^{3}-8 x^{2}+7 x -2\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{6}-2 x^{5}+8 x^{4}-17 x^{3}+19 x^{2}-10 x +2 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 66\)
\(\displaystyle a \! \left(n +2\right) = -\frac{\left(2 n -1\right) a \! \left(n \right)}{n +3}+\frac{\left(13+9 n \right) a \! \left(n +1\right)}{2 n +6}+\frac{3 n^{2}+11 n -8}{2 n +6}, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 66\)
\(\displaystyle a \! \left(n +2\right) = -\frac{\left(2 n -1\right) a \! \left(n \right)}{n +3}+\frac{\left(13+9 n \right) a \! \left(n +1\right)}{2 n +6}+\frac{3 n^{2}+11 n -8}{2 n +6}, \quad n \geq 6\)
This specification was found using the strategy pack "Point Placements" and has 22 rules.
Found on July 23, 2021.Finding the specification took 3 seconds.
Copy 22 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{13}\! \left(x \right) &= x\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19} \left(x \right)^{2} F_{13}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{13}\! \left(x \right) F_{20}\! \left(x \right)\\
\end{align*}\)