Av(1324, 1342, 2143, 3214)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(x -1\right) \left(x^{2}-3 x +1\right)}{4 x^{3}-7 x^{2}+5 x -1}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 214, 688, 2206, 7070, 22660, 72634, 232830, 746352, 2392486, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(4 x^{3}-7 x^{2}+5 x -1\right) F \! \left(x \right)-\left(x -1\right) \left(x^{2}-3 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = 4 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(\left(\left(1947 \,\mathrm{I}+110 \sqrt{59}\right) \sqrt{3}-330 \,\mathrm{I} \sqrt{59}-1947\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+42834+\left(\left(-177 \,\mathrm{I}+32 \sqrt{59}\right) \sqrt{3}+96 \,\mathrm{I} \sqrt{59}-177\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(71 \,\mathrm{I}-6 \sqrt{59}\right) \sqrt{3}-18 \,\mathrm{I} \sqrt{59}+71\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{2904}-\frac{\mathrm{I} \sqrt{3}\, \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{24}+\frac{\left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{24}+\frac{7}{12}\right)^{-n}}{171336}\\+\\\frac{\left(\left(\left(177 \,\mathrm{I}+32 \sqrt{59}\right) \sqrt{3}-96 \,\mathrm{I} \sqrt{59}-177\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}+42834+\left(\left(-1947 \,\mathrm{I}+110 \sqrt{59}\right) \sqrt{3}+330 \,\mathrm{I} \sqrt{59}-1947\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(-71 \,\mathrm{I}-6 \sqrt{59}\right) \sqrt{3}+18 \,\mathrm{I} \sqrt{59}+71\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{2904}+\frac{\mathrm{I} \sqrt{3}\, \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{24}+\frac{\left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{24}+\frac{7}{12}\right)^{-n}}{171336}\\-\\\frac{5 \left(\left(\frac{16 \sqrt{59}\, \sqrt{3}}{55}-\frac{177}{110}\right) \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{59}\, \sqrt{3}-\frac{177 \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{10}-\frac{1947}{10}\right) \left(-\frac{\left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{7}{12}-\frac{71 \left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{1452}+\frac{\left(71+6 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{59}\, \sqrt{3}}{242}\right)^{-n}}{3894} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 37 rules.

Found on January 18, 2022.

Finding the specification took 0 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 37 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{14}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{13}\! \left(x \right) &= 0\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{21}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{29}\! \left(x \right) &= 2 F_{13}\! \left(x \right)+F_{30}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{12}\! \left(x \right)\\ \end{align*}\)