Av(1324, 1342, 1423, 1432)
Generating Function
\(\displaystyle \frac{4 x -1-x \sqrt{-4 x +1}}{4 x -1}\)
Counting Sequence
1, 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, 2704156, 10400600, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(4 x -1\right) F \left(x
\right)^{2}+\left(-8 x +2\right) F \! \left(x \right)+x^{2}+4 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(n +1\right) = \frac{2 \left(-1+2 n \right) a \! \left(n \right)}{n}, \quad n \geq 2\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(n +1\right) = \frac{2 \left(-1+2 n \right) a \! \left(n \right)}{n}, \quad n \geq 2\)
This specification was found using the strategy pack "Point Placements" and has 11 rules.
Found on July 23, 2021.Finding the specification took 1 seconds.
Copy 11 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{5} \left(x \right)^{2} F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{5} \left(x \right)^{2} F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
\end{align*}\)