Av(1324, 1342)
View Raw Data
Generating Function
\(\displaystyle -\frac{x}{2}+\frac{3}{2}-\frac{\sqrt{x^{2}-6 x +1}}{2}\)
Counting Sequence
1, 1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, 5293446, 27297738, 142078746, ...
Implicit Equation for the Generating Function
\(\displaystyle F \left(x \right)^{2}+\left(x -3\right) F \! \left(x \right)+2 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(n +2\right) = -\frac{\left(n -1\right) a \! \left(n \right)}{n +2}+\frac{3 \left(2 n +1\right) a \! \left(n +1\right)}{n +2}, \quad n \geq 2\)
Heatmap

To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point \((i, j)\) represents how many permutations have value \(j\) at index \(i\) (darker = more).

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 14 rules.

Found on April 26, 2021.

Finding the specification took 2 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 14 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{13}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\ F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{5}\! \left(x , y\right)\\ F_{5}\! \left(x , y\right) &= F_{6}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{4}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{7}\! \left(x , y\right)^{2} F_{10}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= y x\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{13}\! \left(x \right)\\ F_{12}\! \left(x , y\right) &= \frac{y F_{4}\! \left(x , y\right)-F_{4}\! \left(x , 1\right)}{-1+y}\\ F_{13}\! \left(x \right) &= x\\ \end{align*}\)

This specification was found using the strategy pack "Insertion Point Placements Tracked Fusion Req Corrob" and has 18 rules.

Found on April 26, 2021.

Finding the specification took 62 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 18 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{9}\! \left(x , y\right)^{2} F_{10}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= y x\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)+F_{15}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= -\frac{y \left(F_{6}\! \left(x , 1\right)-F_{6}\! \left(x , y\right)\right)}{-1+y}\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= -\frac{-y F_{5}\! \left(x , y\right)+F_{5}\! \left(x , 1\right)}{-1+y}\\ F_{17}\! \left(x \right) &= x\\ \end{align*}\)

This specification was found using the strategy pack "All The Strategies Tracked Fusion Req Corrob" and has 15 rules.

Found on April 26, 2021.

Finding the specification took 33 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 15 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y\right)+F_{6}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{5}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{8}\! \left(x , y\right)^{2} F_{11}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= y x\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{14}\! \left(x \right)\\ F_{13}\! \left(x , y\right) &= -\frac{-y F_{5}\! \left(x , y\right)+F_{5}\! \left(x , 1\right)}{-1+y}\\ F_{14}\! \left(x \right) &= x\\ \end{align*}\)