Av(12543, 21543)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 118, 672, 4256, 29176, 212586, 1625704, 12930160, 106242392, 897210996, 7756325952, ...

This specification was found using the strategy pack "Row Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 27 rules.

Finding the specification took 14 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 27 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\ F_{6}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{11}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{8}\! \left(x , y\right) &= -\frac{-F_{6}\! \left(x , y\right) y +F_{6}\! \left(x , 1\right)}{-1+y}\\ F_{9}\! \left(x \right) &= x\\ F_{10}\! \left(x , y\right) &= F_{8}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{22}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y , 1\right)\\ F_{14}\! \left(x , y , z\right) &= F_{15}\! \left(x , y , y z \right)\\ F_{15}\! \left(x , y , z\right) &= F_{16}\! \left(x , z , y\right)\\ F_{16}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y , z\right)+F_{20}\! \left(x , y , z\right)+F_{21}\! \left(x , y , z\right)+F_{23}\! \left(x , y , z\right)\\ F_{17}\! \left(x , y , z\right) &= F_{18}\! \left(x , y , z\right) F_{9}\! \left(x \right)\\ F_{18}\! \left(x , y , z\right) &= F_{19}\! \left(x , z , y\right)\\ F_{19}\! \left(x , y , z\right) &= -\frac{-F_{15}\! \left(x , y , z\right) y +F_{15}\! \left(x , 1, z\right)}{-1+y}\\ F_{20}\! \left(x , y , z\right) &= F_{18}\! \left(x , y , z\right) F_{9}\! \left(x \right)\\ F_{21}\! \left(x , y , z\right) &= F_{16}\! \left(x , y , z\right) F_{22}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= y x\\ F_{23}\! \left(x , y , z\right) &= F_{22}\! \left(x , z\right) F_{24}\! \left(x , y , z\right)\\ F_{24}\! \left(x , y , z\right) &= -\frac{z F_{25}\! \left(x , 1, z\right)-y F_{25}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{25}\! \left(x , y , z\right) &= F_{14}\! \left(x , z , y\right)\\ F_{26}\! \left(x \right) &= F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\ \end{align*}\)