Av(12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312)
Counting Sequence
1, 1, 2, 6, 24, 110, 530, 2597, 12796, 63156, 311826, 1539461, 7598492, 37496186, 184997956, ...
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 16 rules.
Finding the specification took 1 seconds.
Copy 16 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\
F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\
F_{5}\! \left(x , y\right) &= F_{6}\! \left(x , y\right) F_{7}\! \left(x \right)\\
F_{6}\! \left(x , y\right) &= -\frac{-F_{4}\! \left(x , y\right) y +F_{4}\! \left(x , 1\right)}{-1+y}\\
F_{7}\! \left(x \right) &= x\\
F_{8}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , 1, y\right)\\
F_{10}\! \left(x , y , z\right) &= -\frac{-F_{11}\! \left(x , y z \right) y +F_{11}\! \left(x , z\right)}{-1+y}\\
F_{11}\! \left(x , y\right) &= -\frac{-y F_{12}\! \left(x , y\right)+F_{12}\! \left(x , 1\right)}{-1+y}\\
F_{12}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)^{2} F_{15}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= y x\\
\end{align*}\)