Av(12453, 12543, 15243, 51243)
Counting Sequence
1, 1, 2, 6, 24, 116, 634, 3767, 23772, 157027, 1075196, 7578950, 54717750, 403054914, 3020006704, ...
This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 52 rules.
Found on January 23, 2022.Finding the specification took 50 seconds.
Copy 52 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{3}\! \left(x \right) &= x\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\
F_{7}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y_{0}\right)+F_{45}\! \left(x , y_{0}\right)+F_{8}\! \left(x , y_{0}\right)\\
F_{8}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y_{0}\right)\\
F_{9}\! \left(x , y_{0}\right) &= \frac{y_{0} F_{7}\! \left(x , y_{0}\right)-F_{7}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{10}\! \left(x , y_{0}\right) &= F_{11}\! \left(x , y_{0}\right) F_{12}\! \left(x , y_{0}\right)\\
F_{11}\! \left(x , y_{0}\right) &= y_{0} x\\
F_{12}\! \left(x , y_{0}\right) &= F_{13}\! \left(x , y_{0}, 1\right)\\
F_{13}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
F_{14}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y_{0}, y_{1}\right)+F_{17}\! \left(x , y_{0}, y_{1}\right)+F_{19}\! \left(x , y_{1}, y_{0}\right)+F_{20}\! \left(x , y_{0}, y_{1}\right)\\
F_{15}\! \left(x , y_{0}, y_{1}\right) &= F_{16}\! \left(x , y_{0}, y_{1}\right) F_{3}\! \left(x \right)\\
F_{16}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{14}\! \left(x , y_{0}, y_{1}\right)-F_{14}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{17}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x , y_{0}\right) F_{18}\! \left(x , y_{0}, y_{1}\right)\\
F_{18}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{13}\! \left(x , y_{0}, 1\right)-y_{1} F_{13}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right)}{-y_{1}+y_{0}}\\
F_{19}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x , y_{0}\right) F_{14}\! \left(x , y_{1}, y_{0}\right)\\
F_{20}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x , y_{0}, y_{1}\right) F_{3}\! \left(x \right)\\
F_{21}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{1} F_{22}\! \left(x , y_{0}, y_{1}\right)-F_{22}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\
F_{22}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x , y_{0}, y_{1}\right)+F_{25}\! \left(x , y_{0}, y_{1}\right)+F_{42}\! \left(x , y_{1}, y_{0}\right)+F_{44}\! \left(x , y_{0}\right)\\
F_{23}\! \left(x , y_{0}, y_{1}\right) &= F_{24}\! \left(x , y_{0}, y_{1}\right) F_{3}\! \left(x \right)\\
F_{24}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{22}\! \left(x , y_{0}, y_{1}\right)-F_{22}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
F_{25}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x , y_{0}\right) F_{26}\! \left(x , y_{0}, y_{1}\right)\\
F_{26}\! \left(x , y_{0}, y_{1}\right) &= F_{27}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{27}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{41}\! \left(x , y_{1}, y_{0}, y_{2}\right)+F_{42}\! \left(x , y_{2}, y_{0} y_{1}\right)+F_{43}\! \left(x , y_{0}, y_{1}\right)\\
F_{28}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{3}\! \left(x \right)\\
F_{29}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{0} y_{1} F_{27}\! \left(x , y_{0}, y_{1}, y_{2}\right)-F_{27}\! \left(x , \frac{1}{y_{1}}, y_{1}, y_{2}\right)}{y_{0} y_{1}-1}\\
F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{31}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}\right)\\
F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{33}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{35}\! \left(x , y_{1}, y_{0}, y_{2}\right)+F_{37}\! \left(x , y_{2}, y_{0}, y_{1}\right)+F_{38}\! \left(x , y_{0}, y_{1}\right)\\
F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{0} F_{22}\! \left(x , y_{0}, y_{2}\right)-y_{1} F_{22}\! \left(x , y_{1}, y_{2}\right)}{-y_{1}+y_{0}}\\
F_{33}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{3}\! \left(x \right) F_{34}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{34}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{0} F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right)-F_{32}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{35}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{11}\! \left(x , y_{0}\right) F_{36}\! \left(x , y_{1}, y_{0}, y_{2}\right)\\
F_{36}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{-y_{1} F_{27}\! \left(x , 1, y_{1}, y_{2}\right)+y_{0} F_{27}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}\right)}{-y_{1}+y_{0}}\\
F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{11}\! \left(x , y_{0}\right) F_{32}\! \left(x , y_{1}, y_{2}, y_{0}\right)\\
F_{38}\! \left(x , y_{0}, y_{1}\right) &= F_{3}\! \left(x \right) F_{39}\! \left(x , y_{0}, y_{1}\right)\\
F_{39}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{40}\! \left(x , y_{0}\right)-y_{1} F_{40}\! \left(x , y_{1}\right)}{-y_{1}+y_{0}}\\
F_{40}\! \left(x , y_{0}\right) &= F_{22}\! \left(x , y_{0}, 1\right)\\
F_{41}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{11}\! \left(x , y_{0}\right) F_{27}\! \left(x , y_{1}, y_{0}, y_{2}\right)\\
F_{42}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x , y_{0}\right) F_{22}\! \left(x , y_{1}, y_{0}\right)\\
F_{43}\! \left(x , y_{0}, y_{1}\right) &= F_{20}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
F_{44}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{40}\! \left(x , y_{0}\right)\\
F_{45}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{46}\! \left(x , y_{0}\right)\\
F_{46}\! \left(x , y_{0}\right) &= \frac{y_{0} F_{47}\! \left(x , y_{0}\right)-F_{47}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{47}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y_{0}\right)+F_{44}\! \left(x , y_{0}\right)+F_{48}\! \left(x , y_{0}\right)\\
F_{48}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{49}\! \left(x , y_{0}\right)\\
F_{49}\! \left(x , y_{0}\right) &= \frac{y_{0} F_{47}\! \left(x , y_{0}\right)-F_{47}\! \left(x , 1\right)}{-1+y_{0}}\\
F_{50}\! \left(x \right) &= F_{3}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{47}\! \left(x , 1\right)\\
\end{align*}\)