Av(12453, 12543, 14253, 14523, 14532, 15243, 15423, 15432, 41253, 41523, 41532)
Counting Sequence
1, 1, 2, 6, 24, 109, 522, 2561, 12765, 64486, 329766, 1704944, 8900758, 46863539, 248584004, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{4} \left(x -1\right) \left(x^{2}-x +1\right) \left(7 x^{3}-20 x^{2}+14 x -3\right) F \left(x
\right)^{6}-2 x^{3} \left(2 x -1\right) \left(2 x^{5}-7 x^{4}+12 x^{3}-12 x^{2}+8 x -2\right) F \left(x
\right)^{5}-x^{2} \left(8 x^{6}-40 x^{5}+93 x^{4}-116 x^{3}+72 x^{2}-20 x +2\right) F \left(x
\right)^{4}+4 x \left(x^{4}-4 x^{3}+10 x^{2}-6 x +1\right) \left(x -1\right)^{2} F \left(x
\right)^{3}+\left(9 x^{4}-16 x^{3}+6 x -1\right) \left(x -1\right)^{2} F \left(x
\right)^{2}-6 x \left(x -1\right)^{4} F \! \left(x \right)+\left(x -1\right)^{4} = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 109\)
\(\displaystyle a(6) = 522\)
\(\displaystyle a(7) = 2561\)
\(\displaystyle a(8) = 12765\)
\(\displaystyle a(9) = 64486\)
\(\displaystyle a(10) = 329766\)
\(\displaystyle a(11) = 1704944\)
\(\displaystyle a(12) = 8900758\)
\(\displaystyle a(13) = 46863539\)
\(\displaystyle a(14) = 248584004\)
\(\displaystyle a(15) = 1327233740\)
\(\displaystyle a(16) = 7127315219\)
\(\displaystyle a(17) = 38470665087\)
\(\displaystyle a(18) = 208604032649\)
\(\displaystyle a(19) = 1135806258088\)
\(\displaystyle a(20) = 6207293801222\)
\(\displaystyle a(21) = 34038332741575\)
\(\displaystyle a(22) = 187228984771937\)
\(\displaystyle a(23) = 1032770485798140\)
\(\displaystyle a(24) = 5711645182760584\)
\(\displaystyle a(25) = 31663400400960277\)
\(\displaystyle a(26) = 175919871981562188\)
\(\displaystyle a(27) = 979408261269289674\)
\(\displaystyle a(28) = 5463134486431692298\)
\(\displaystyle a(29) = 30527646047153001509\)
\(\displaystyle a(30) = 170870675990639430051\)
\(\displaystyle a(31) = 957897031139777554678\)
\(\displaystyle a(32) = 5377812525712283549760\)
\(\displaystyle a(33) = 30233623594948372187672\)
\(\displaystyle a(34) = 170191514217565116569227\)
\(\displaystyle a(35) = 959217539588436786710579\)
\(\displaystyle a(36) = 5412510745427965922600746\)
\(\displaystyle a(37) = 30574273149100783601003862\)
\(\displaystyle a(38) = 172887882560073882443578415\)
\(\displaystyle a(39) = 978590997529013392597962030\)
\(\displaystyle a(40) = 5544278146143248312629569687\)
\(\displaystyle a(41) = 31439551696835341758521056498\)
\(\displaystyle a(42) = 178433752278876019237816988323\)
\(\displaystyle a(43) = 1013514675517078545855530706459\)
\(\displaystyle a(44) = 5761288535941775841496387975380\)
\(\displaystyle a(45) = 32774115824128238856040919659610\)
\(\displaystyle a(46) = 186573642351564466877288408115310\)
\(\displaystyle a(47) = 1062831920726434983599803055242221\)
\(\displaystyle a(48) = 6058452787547189921674635466062809\)
\(\displaystyle a(49) = 34556542763744724371808511799161808\)
\(\displaystyle a(50) = 197223891733034254218956623144540496\)
\(\displaystyle a(51) = 1126261722234182192051519902284244818\)
\(\displaystyle a(52) = 6435171819456319975070936515776289159\)
\(\displaystyle a(53) = 36788576878602333884149262505909122466\)
\(\displaystyle a(54) = 210421124467149863755455815899711870113\)
\(\displaystyle a(55) = 1204151536060345779544952818081092858268\)
\(\displaystyle a(56) = 6894150905794115299479300386594788436580\)
\(\displaystyle a(57) = 39489445487706105555652810906970737722889\)
\(\displaystyle a(58) = 226295041629785383354222459413668245025395\)
\(\displaystyle a(59) = 1297347393050177080298253054577938858228051\)
\(\displaystyle a(60) = 7440782046217240096618918705743276339222872\)
\(\displaystyle a(61) = 42692938918058092950678731630540923163129766\)
\(\displaystyle a(62) = 245054727582866757479289297995139148247977725\)
\(\displaystyle a(63) = 1407130394737244565307788709363760592070754548\)
\(\displaystyle a(64) = 8082854058448832819666400182022659986430737404\)
\(\displaystyle a(65) = 46446116488769281428465511431260861471191066049\)
\(\displaystyle a(66) = 266983064817678399236541693792944293068172991526\)
\(\displaystyle a(67) = 1535193863981221800733594444085606885503872907573\)
\(\displaystyle a(68) = 8830467637995767030664226541100645591068602534626\)
\(\displaystyle a(69) = 50809051818744637246874270125104694859027287952720\)
\(\displaystyle a(70) = 292436450300914935600035310174901416160509101718592\)
\(\displaystyle a(71) = 1683647704723214097241701631070027424604669946309106\)
\(\displaystyle a(72) = 9696090950176640071463399542035659238021054981808781\)
\(\displaystyle a(73) = 55855308688998911951466794106419886045261240603670322\)
\(\displaystyle a(74) = 321848334765878118842189302936725123969179700232798966\)
\(\displaystyle a(75) = 1855042901224600244703876295636975883600172531502211153\)
\(\displaystyle a(76) = 10694722033764464720157637371255430059811829478613291173\)
\(\displaystyle a(77) = 61672987200970301152934656923721551027124868555703783297\)
\(\displaystyle a(78) = 355735827221479317199614328894673339236114871957088010776\)
\(\displaystyle a(79) = 2052412599602507534224652541138303741763265033853099575987\)
\(\displaystyle a(80) = 11844141480206563303208831978840694119707945306753752186357\)
\(\displaystyle a(81) = 68366264401415641674035231110436918688965888062134200451255\)
\(\displaystyle a(82) = 394709023575665352699313929936258116466638925532928143151112\)
\(\displaystyle a(83) = 2279328279790092960970455891444742746794115557477882166992081\)
\(\displaystyle a(84) = 13165249140152053758944018542499456164729013475343889315549786\)
\(\displaystyle a(85) = 76057405050817855494918519901859419268553250420461852257000944\)
\(\displaystyle a(86) = 439482977523449595865862645027807160695066401145697244415861775\)
\(\displaystyle a(87) = 2539970838363314226830794490692526891699840190956470442663217657\)
\(\displaystyle a(88) = 14682485291303596348150461809205488451933958230821047336027781693\)
\(\displaystyle a(89) = 84889252450353773643051172728790066485529453083094937340634534336\)
\(\displaystyle a(90) = 490892408415640455370879117080866662306813800367786641963694792973\)
\(\displaystyle a(91) = 2839217319356149559509898932548484878751205796306636367864493400740\)
\(\displaystyle a(92) = 16424341493719164241554588979244484148082024782977649180306459651532\)
\(\displaystyle a(93) = 95028234471126469938196178389583786323728302859779813221426232887697\)
\(\displaystyle a(94) = 549909374592922880575208421295310944369018997963899794701125625077985\)
\(\displaystyle a(95) = 3182744744535622804788621472490557317903453694277603129371597621080375\)
\(\displaystyle a(96) = 18423970200508323788332866285078103248659249109207970104933418619577614\)
\(\displaystyle a(97) = 106667940734684009175805452921073457800661470718720830455736688831562140\)
\(\displaystyle a(98) = 617664254101880619996551148507485848537592562212394606420881025452897635\)
\(\displaystyle a(99) = 3577153117059391220467518618592707304978368436384264027761747520392796414\)
\(\displaystyle a(100) = 20719905628617229723567267464530887408781166038584096806902896031670924758\)
\(\displaystyle a(101) = 120033345979552945774944516168552183042844008943185461201702468105112264697\)
\(\displaystyle a(102) = 695470481275739899763863313620983176707973871518157294510586734367417421264\)
\(\displaystyle a(103) = 4030110270446764602651151820930491969681577518076956352784057153499385239045\)
\(\displaystyle a(104) = 23356911765669294635941884832501908797670266162715069375040217714588705822808\)
\(\displaystyle a(105) = 135385773734037650062658964725047454346250980423662879305135433676646738804780\)
\(\displaystyle a(106) = 784853596121853301161359172053559007646052917440328327704864358363144788287470\)
\(\displaystyle a(107) = 4550521853262841467392154658877155944732630967645108681010330960936133613207253\)
\(\displaystyle a(108) = 26386976926387521747479295197603502992609266144594999649552216723065879962624118\)
\(\displaystyle a(109) = 153028714705476031245949698495534632965513751186273805005326249665531795529227652\)
\(\displaystyle a(110) = 887585280116574718210958078627266755808432141878889508580510825147575699732981556\)
\(\displaystyle a(111) = 5148730412104694386825723905099150205998524092658216856755064388172129873250213457\)
\(\displaystyle a(112) = 29870478152696093296253114515131595946442750826953223127344373084432988708032388988\)
\(\displaystyle a(113) = 173314636736574262719373670773119611087410403889246015815310848077115058826076356399\)
\(\displaystyle a(114) = 1005723181968386611840908292972758691839545594958998186741220073942541777287131614627\)
\(\displaystyle a(115) = 5836748289103464144282163329164900701761686628248520227809556026367453760855478195419\)
\(\displaystyle a(116) = 33877543126785889849290984206404445771398843268094940646029185287246625036029196360740\)
\(\displaystyle a(117) = 196652948605175552965874858704726052400999633361381736249428866461051374390658388064116\)
\(\displaystyle a(118) = 1141657484797830645210540477556747591258442679978259753040435435910996535323301987788577\)
\(\displaystyle a(119) = 6628529911001400668188802412943528696043457223199587052068903945707160013435411969004539\)
\(\displaystyle a{\left(n + 120 \right)} = - \frac{729593028722237115090046399 \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) a{\left(n \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{3757565 \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(4597272114978270175847 n + 26729001771514401796417\right) a{\left(n + 1 \right)}}{29091692544 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{1715 \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(527937431730021286031828395 n^{2} + 6660433611395282295159319919 n + 20958280205190548034353100046\right) a{\left(n + 2 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{245 \left(n + 4\right) \left(n + 5\right) \left(84695530410226572338035409057 n^{3} + 1728325718965331476981147747626 n^{2} + 11713120640277289155922400170261 n + 26353453760474440189506245378508\right) a{\left(n + 3 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{7 \left(n + 5\right) \left(25059469893931685885496194462778 n^{4} + 731367283034088148906423327790125 n^{3} + 7967171681870042740395528664545440 n^{2} + 38380546524375378655768725930902125 n + 68963353662584869349091395044915782\right) a{\left(n + 4 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(253579 n + 29484109\right) a{\left(n + 119 \right)}}{1734 \left(n + 121\right)} - \frac{\left(18401287 n^{2} + 4260294567 n + 246587131020\right) a{\left(n + 118 \right)}}{1734 \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(265327205 n^{3} + 91735987434 n^{2} + 10572380739130 n + 406144892307768\right) a{\left(n + 117 \right)}}{2601 \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(9511268414 n^{4} + 4365154237554 n^{3} + 751251405725713 n^{2} + 57462142293455523 n + 1648173683985408288\right) a{\left(n + 116 \right)}}{2601 \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(5429159634529 n^{5} + 3100689582045935 n^{4} + 708327481601509040 n^{3} + 80904015586213739440 n^{2} + 4620258736181841863556 n + 105538953813055210507680\right) a{\left(n + 115 \right)}}{10404 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(257154583860724 n^{5} + 145617404123518120 n^{4} + 32982467666679939515 n^{3} + 3735200515776607091450 n^{2} + 211497709167419935778781 n + 4790142459057007920160890\right) a{\left(n + 114 \right)}}{20808 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(10398468289260798 n^{5} + 5837559481275752180 n^{4} + 1310825017520618413365 n^{3} + 147170124012830022924445 n^{2} + 8261448228785391515123742 n + 185500191405528859888177920\right) a{\left(n + 113 \right)}}{41616 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(1465744104526173919 n^{5} + 815669174868623082925 n^{4} + 181560722017556765124195 n^{3} + 20206532427323340674563955 n^{2} + 1124407654945583648305636286 n + 25026952170255309966505081440\right) a{\left(n + 112 \right)}}{332928 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(45713482595962546399 n^{5} + 25214321059440852833735 n^{4} + 5562917329533935324916195 n^{3} + 613649493314236635793820245 n^{2} + 33845479972856445978675676226 n + 746678355776027345530276825440\right) a{\left(n + 111 \right)}}{665856 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(638427138512883854819 n^{5} + 348993256363902933574545 n^{4} + 76308935822532728242459045 n^{3} + 8342505861644201457558821595 n^{2} + 456016427210048255874163761456 n + 9970509891227830440462077479260\right) a{\left(n + 110 \right)}}{665856 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(8059904126429153335877 n^{5} + 4366128903574556530606995 n^{4} + 946054441497165640317818280 n^{3} + 102494061175246632905604297750 n^{2} + 5551934821792050952920471545128 n + 120293780983572640604272449825000\right) a{\left(n + 109 \right)}}{665856 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(74133440488184202604759 n^{5} + 39792615237441069978566573 n^{4} + 8543658393680661375814639255 n^{3} + 917167036231650215291899501939 n^{2} + 49228461112137249930375861451066 n + 1056908575309581893465143819532424\right) a{\left(n + 108 \right)}}{2663424 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(2603039692880767050363651 n^{5} + 1384373987438609249494818615 n^{4} + 294495903157194823904694166385 n^{3} + 31323362661445458374289885856775 n^{2} + 1665792445143345304552328215523694 n + 35434545565942950469571208564267480\right) a{\left(n + 107 \right)}}{1775616 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(75743865544441612954228551 n^{5} + 39908788311751849375143005185 n^{4} + 8410908296291628166384463565590 n^{3} + 886299779152641509391104099776385 n^{2} + 46696235235845356586222907005384359 n + 984094179525609143692390757874731010\right) a{\left(n + 106 \right)}}{5326848 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(1358633906365305674885814953 n^{5} + 709148142238747817678499351435 n^{4} + 148055602117331006203565192984550 n^{3} + 15455255349064253124122101845543540 n^{2} + 806661049870055928424931414419453432 n + 16840680556119734419619483125124918640\right) a{\left(n + 105 \right)}}{10653696 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(180921216603945151496237875873 n^{5} + 93541170290832537036641786942675 n^{4} + 19345035256105960672398852090986325 n^{3} + 2000321440278731009034483856961164045 n^{2} + 103417418065386082425222547119717734522 n + 2138657874226951622549823485472956494800\right) a{\left(n + 104 \right)}}{170459136 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(560688918790959497896460039405 n^{5} + 287130431792352441800203160444477 n^{4} + 58815254472669636593835056220545973 n^{3} + 6023714131280535530735147663773702051 n^{2} + 308462548046020842770182758026456843470 n + 6318214017028537752046557264140851954416\right) a{\left(n + 103 \right)}}{340918272 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(20275799977909265428199560061221 n^{5} + 10283567524433316813654869913458655 n^{4} + 2086234896526169254755330288092449425 n^{3} + 211614934273946431322216677319290686225 n^{2} + 10732310473584719503637815763525795866874 n + 217717848646154525618628316817278421694720\right) a{\left(n + 102 \right)}}{340918272 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(34308551716657613091645032943321 n^{5} + 17232189356032390297221615345792880 n^{4} + 3462041201942403844802873935302444805 n^{3} + 347766558633560052183845872350247843280 n^{2} + 17466557322439297156130028776794474594094 n + 350897929437800994199898826881920799517900\right) a{\left(n + 101 \right)}}{85229568 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(1742447671452346997114048954467867 n^{5} + 866627890924594204900501203759361585 n^{4} + 172408788978519115284741545528067760335 n^{3} + 17149445105994169632734303338556721398255 n^{2} + 852913076270883287106606253229936072816078 n + 16967333167770525978777427780687792544318520\right) a{\left(n + 100 \right)}}{681836544 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(9331408720970066702556813314409343 n^{5} + 363476398865553763625367512386990755 n^{4} + 5632826294887742380631705407805942215 n^{3} + 43397363068086111741590820116722401645 n^{2} + 166166239779956048051219424137028611842 n + 252878469267491292532888033761971022360\right) a{\left(n + 5 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(20794159748923036389768098637491203 n^{5} + 10240246326470183773110040974306890555 n^{4} + 2017127671337818701275459368918359089195 n^{3} + 198664576349600319711782063554369429989325 n^{2} + 9782990795574590251471177629723604026830802 n + 192697952241492530288774132092075027842116280\right) a{\left(n + 99 \right)}}{1363673088 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(101615333213647521364795017123109029 n^{5} + 4441057886323199669514535771468803475 n^{4} + 77339983260970212635969409805299769345 n^{3} + 670692010990115946401904600129137279645 n^{2} + 2895633478756890483289249808076604896746 n + 4978008995354739440231155110707331019200\right) a{\left(n + 6 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(116844296531466520461989184397010823 n^{5} + 56968198027264684015463780621182572205 n^{4} + 11109935722149299715060538884835417233925 n^{3} + 1083315150914692110101464214498861574143375 n^{2} + 52815620896666492175856242485781180195003252 n + 1029969457622721097754054804685619108528581060\right) a{\left(n + 98 \right)}}{1363673088 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(931110609181271320308841053991083959 n^{5} + 45103315724281582859014640106541150695 n^{4} + 871493994953277078376045455392181524015 n^{3} + 8394791812088942101458045449093680896345 n^{2} + 40306412813307786425858888828474510956346 n + 77157003305956127193743467839152879092080\right) a{\left(n + 7 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(1034143353035341203918554918393762776 n^{5} + 494072742644987415915312301676037540235 n^{4} + 94418139313844515124449285456756943799555 n^{3} + 9021618861563828415631359641785621461990725 n^{2} + 431000822485682853255155878313021485022199669 n + 8236190553612219630014483598698298664192564480\right) a{\left(n + 96 \right)}}{454557696 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(1238758235753860795524707608604173801 n^{5} + 597896148511954829223375574397836319225 n^{4} + 115430135143607485963189156445046539074285 n^{3} + 11142355359669218945068625534441990674202335 n^{2} + 537773319502380035961371998239425356815161794 n + 10381880470698546436752387684755819174971872960\right) a{\left(n + 97 \right)}}{2727346176 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(5005520244813112560020558951442757045 n^{5} + 289519024219424801212324640396888259695 n^{4} + 6688143344932756835989522332349238914395 n^{3} + 77128144295473323355958523447776973320605 n^{2} + 443981225272845377361769552242039663938072 n + 1020502954498072800749939156046253881072828\right) a{\left(n + 9 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(7319363769469321628160256039854155851 n^{5} + 389057228880134614532700340449102278465 n^{4} + 8255141825372606135227019889636123031515 n^{3} + 87391382021728285050029698521771565603855 n^{2} + 461525264725568427925447829574840425460434 n + 972620464601410558826168603030354879475240\right) a{\left(n + 8 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(39217198824463383037822681875367628327 n^{5} + 18544398485727960589303397005620187363415 n^{4} + 3507546672212249861814064813195014593751535 n^{3} + 331710174611358836460229515038795707999345865 n^{2} + 15684794800457364641271511056501939612210604938 n + 296656370077955462708123064890240071832835912640\right) a{\left(n + 95 \right)}}{3636461568 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(79930196383805511300679734198199824865 n^{5} + 5361115755148491519864842914878448530421 n^{4} + 143705455561580107254490626897088463122046 n^{3} + 1924276737017600183436516676842733768408805 n^{2} + 12871452339687892268610608051711329918860321 n + 34405699749810913382919266652926432840869866\right) a{\left(n + 11 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(150392879379354198072031910161449787453 n^{5} + 9397353993203782124767992478002687928435 n^{4} + 234610504742207010945820058730061254940935 n^{3} + 2925123210640854003556998982528484240557085 n^{2} + 18212691635185033668699150661762187609260952 n + 45300545370504319172103247620942546375883260\right) a{\left(n + 10 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(376895887302962573038821433633623714132 n^{5} + 26974429713960461170677428118101412991340 n^{4} + 771645804126612878516398897742584143891385 n^{3} + 11028868611904576319842814546278118199825196 n^{2} + 78757302544685939427830306716328415986948795 n + 224794089300211760209298876169390415112366832\right) a{\left(n + 12 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(528546046305064733809884685716734384159 n^{5} + 247342335653544679461431393900880493306965 n^{4} + 46298692698635373561781073462733505408483155 n^{3} + 4333150140585698490970506693275942462841093435 n^{2} + 202769937727139038129095674805933993668154863566 n + 3795406442062183051925097454425155297633015893680\right) a{\left(n + 94 \right)}}{10909384704 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(563331456963732146381415175630730052528 n^{5} + 260861991518909986887969425627763236142875 n^{4} + 48318376748625350644585283010115982911892980 n^{3} + 4474852098234393829170062290847487508430766565 n^{2} + 207209629341396532078301543351074421213084467592 n + 3837922015381773036851044261115321875993081877580\right) a{\left(n + 93 \right)}}{2727346176 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(1217021181835945087351607513164929398977 n^{5} + 557604305039524312168362328455417724376195 n^{4} + 102190111748687717315904148910646079610351445 n^{3} + 9363894040052778692320257064793615599388792861 n^{2} + 429011605208020623595390632752153669447104585826 n + 7862064144771147465665172809559992430380796841656\right) a{\left(n + 92 \right)}}{7272923136 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(28934960505665335625956703621553686845764 n^{5} + 2314953600115808185004762380845319818419115 n^{4} + 74010403774576744990497346356142612178492800 n^{3} + 1181949976736284271812204242005005701183296805 n^{2} + 9429190626553957722392410234849425915140757836 n + 30062187603105002991024807321309907321705302360\right) a{\left(n + 14 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(31498696606271609717845191822732236248961 n^{5} + 2391389717514748031999742247034618020078185 n^{4} + 72567794631929072267269308186565794424686565 n^{3} + 1100257227411201351846099510232998272312252175 n^{2} + 8335083381395178800439409350918272684252226834 n + 25239907210352001226023109721591621230767041040\right) a{\left(n + 13 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(80181436807718962455335403877973230262105 n^{5} + 17885406386794917340712986477790474963994057 n^{4} + 1121635962175601251489670566658022067934385983 n^{3} + 30770406265234208788443248400611977948597794255 n^{2} + 393039357601903927202173837161390495008421021128 n + 1920625150255274795239050874559227308899082611256\right) a{\left(n + 18 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(120377183964796774487291326397104642658653 n^{5} + 53382396935301249348678653888636133256162673 n^{4} + 9469052398304938513412682811336980658990261381 n^{3} + 839807186136357064698459308497060039627094413915 n^{2} + 37240655342775974922164072854649975568229067929946 n + 660556142178171421310179025408486719846605208584304\right) a{\left(n + 89 \right)}}{14545846272 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(140685901078970421215978731557659974748453 n^{5} + 63768763136522186883457836185653079552678165 n^{4} + 11561659667961561454019216327670484525602800685 n^{3} + 1048086720276843007734770207841039189180798974995 n^{2} + 47504983307075229062655406975962154800422956347502 n + 861263589221004643345832382865231665318039402442200\right) a{\left(n + 91 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(188682073154582854486427627298576453522221 n^{5} + 16158597235927100749831170655018310682322127 n^{4} + 550610011133868605306168126871653910246290633 n^{3} + 9326242758981910819060677214386480102365335825 n^{2} + 78464297033898627712314607695038171102154005474 n + 262075255314647226315278422331002694816661463416\right) a{\left(n + 16 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(258115774918868663060551608930265927394309 n^{5} + 115730512143664376578439085974497482463891215 n^{4} + 20755629317611165147483979556097447689874486010 n^{3} + 1861181425406072635113317751548952053269751677215 n^{2} + 83446157282328037798393660370297545503725097395861 n + 1496507319711431565812114334629610413095118000890710\right) a{\left(n + 90 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(366187846411244853248950329479462748101229 n^{5} + 30592061926393672734763314219480454350857565 n^{4} + 1020393602654807812927950398618598598456977625 n^{3} + 16985682519185421510193409909550290167431057435 n^{2} + 141105342172531022038013690721525068981359298306 n + 467977377678991063851650927474878063924735044240\right) a{\left(n + 15 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(1616289158257119088616463841238010508339323 n^{5} + 131440690960229820590175562580547250619627935 n^{4} + 4123980947711817462708831734871107300704391455 n^{3} + 61268316493394132309500112623207811361293616665 n^{2} + 414953861027446480044864524104690697491965046262 n + 925262529746947458281569359750524957294998656600\right) a{\left(n + 17 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(2863669945273460870510160740336922585915836 n^{5} + 349090308314862985057570224878108648291128450 n^{4} + 16744220901312916587583396798617574113069073545 n^{3} + 396314807526481034489516990858259096603874215950 n^{2} + 4639666846469323477066763475043377420728763316279 n + 21530474700594496875954295772995894638478456159260\right) a{\left(n + 19 \right)}}{10909384704 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(12051911801403199663282995365281820747406803 n^{5} + 5285343070782523052818613154688485940100189605 n^{4} + 927138769488045154530170570956789156960330913975 n^{3} + 81316872687618539755210216966691919648568522605755 n^{2} + 3565997143653375797524258993632342340726259383095782 n + 62551211672157410412976403105674966123830064832760720\right) a{\left(n + 88 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(12802570493086210256680610000912931701231431 n^{5} + 5551605778704632640415813190051917504405978215 n^{4} + 962928492914669630579544115564080516569859761055 n^{3} + 83509033881169047417252322774912491312467703578025 n^{2} + 3621069810381628550125040617994705946213148016372634 n + 62805018920351497158712653091653748501280143448878640\right) a{\left(n + 87 \right)}}{29091692544 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(27019733839416731344438861355904894330582952 n^{5} + 3330495174125749436502315829191818666317589131 n^{4} + 163652210135363584880296514190100207765737337624 n^{3} + 4008132308364051961461028078740395247053646276941 n^{2} + 48940423291969615805881958108911017892865851397386 n + 238383290971867940167006875379603599614003661661506\right) a{\left(n + 21 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(29243935275658250197941387312329910291013942 n^{5} + 12537193525469077920041664638218641639498410355 n^{4} + 2149900423406620657655804687469398298430077297085 n^{3} + 184331632084908159729032548529089180764534029503395 n^{2} + 7902143126222326107537994879782650774330835006429013 n + 135501278010185599596816496591883958799716949899995970\right) a{\left(n + 86 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(47489013885641344275806667947288805692211346 n^{5} + 19890790287927570275068992724615872218402558199 n^{4} + 3332445056909046180463927735299665658919984668968 n^{3} + 279148939409695009732430689289874265097471591892327 n^{2} + 11691518668207867251244458749745205930151914458393930 n + 195865412827701162542992180169042524238453427489031806\right) a{\left(n + 84 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(65027936160073711849562945508235689921777467 n^{5} + 7839425137689487721456926129715861615326126745 n^{4} + 375757174638644843824491425987499948250793855865 n^{3} + 8957305358285923119381267004368825874288913998315 n^{2} + 106252858545922776915840887137965757083962972775568 n + 501986965380425370454701320391957220002412388470320\right) a{\left(n + 20 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(170361779769258549213534505470836241274644787 n^{5} + 72196568004639887852593373585692832006930714565 n^{4} + 12238094757041779575167989237556496165153633218215 n^{3} + 1037227271262653656860818688758783817415502361631815 n^{2} + 43953844369080799605258158703519299828537968141914058 n + 745027973713014305599793749646417759329890518054734200\right) a{\left(n + 85 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(474416552309968365598346231087349171172284921 n^{5} + 60295115747333931149177165045740499195668461600 n^{4} + 3058120158997118270513616091880016592819484802605 n^{3} + 77382593535218767222831069578861438931210427717310 n^{2} + 977011668421428156333770880701081763451741036311004 n + 4924486450711009864907515131938326913545055967570900\right) a{\left(n + 22 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(633805537523438575087907366552034120674130814 n^{5} + 262338348694390854918935587991227285082753400815 n^{4} + 43432876918515357599851137758246913502052085409570 n^{3} + 3595310439594620332267919019386458475763063914501545 n^{2} + 148804160591744087055366358488961491540655754076893356 n + 2463454314093560815820404126714040256836957400777034680\right) a{\left(n + 83 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(648349889574902023558058071110273620907528081 n^{5} + 265150236032719668308281015885617507669652608239 n^{4} + 43373494580578147958538268357519629369421034280541 n^{3} + 3547451792003039559129000562819257211434116756215477 n^{2} + 145066834348018275422146739678542593689438597811840122 n + 2372843752579179879617980435749099903573111540918417636\right) a{\left(n + 82 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(5580139085133771667077249007455890149558028839 n^{5} + 758843902681683627030488519529171734588992068085 n^{4} + 41216163347936078000746375381119386830645566700075 n^{3} + 1117703487876306423122932262176940687391999442369355 n^{2} + 15134020983309993773382414502179848022021069675706366 n + 81858542143950854200474223545633892459205618794250960\right) a{\left(n + 24 \right)}}{29091692544 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(5914376773836637976841370375841677108033574007 n^{5} + 777202131539473533615221605901062449922113831395 n^{4} + 40779371367435131796821813235405616477590309443795 n^{3} + 1068005815610377388773621447794222947890982382364765 n^{2} + 13962590007174676225756753374789514327723851397783198 n + 72901783112033103773865907321315641724500875571387480\right) a{\left(n + 23 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(15892889204431563176545785084921762229722930863 n^{5} + 6420807770297992853553668705380747541626356003895 n^{4} + 1037587602439802161048169150263065973307044409468755 n^{3} + 83833575980988413007880088066100430513799722990217465 n^{2} + 3386640655078176809309937579866609116932171029267787822 n + 54722751545999006673364525013176641903540466053724872960\right) a{\left(n + 81 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(16844753265173849687361591344826979419527764727 n^{5} + 6637904958321698065861436845130406565538327025827 n^{4} + 1046264774500981530264004552295415124432227769206223 n^{3} + 82452921371339679947173960694760244513945049632798693 n^{2} + 3248807706451677979379092371404507296842511054375505106 n + 51201784690831010219226388561136126580567048852464952288\right) a{\left(n + 79 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(18218548162376342928954064713269885390097049003 n^{5} + 7088418115952792358549938782887045891695446951067 n^{4} + 1103129212664336050289147650987255152181959331804217 n^{3} + 85833044033416849675702010366986152427481581170308797 n^{2} + 3339129466459713618062899918541287214261608843214871684 n + 51957964346314388550440334856150673083759081676908349328\right) a{\left(n + 78 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(21793002881293347690430595098232333805161677411 n^{5} + 3067252695285384118200689441275925735581497109285 n^{4} + 172448159851989182651432588355031698417997444851935 n^{3} + 4841469487556619900681730165628772272282236647848795 n^{2} + 67877713494101076159605588300885461817224943753035254 n + 380206023911814796632591360211977300300636892162492920\right) a{\left(n + 25 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(37356438594782805299079740768768239894315920789 n^{5} + 14906689047519858883776599901552347419978884483195 n^{4} + 2379267970993019586879288831347401924902214603599545 n^{3} + 189872345871002616287729662730783808293196216903951525 n^{2} + 7575930713209080005046828870369176458160989727623577506 n + 120908239190138437468682885029819402717754678248891637520\right) a{\left(n + 80 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(52605036303091182612154426937928526646954919303 n^{5} + 7660936403828236544831623268668833654580156755895 n^{4} + 445702804432932731920484248106361072061053270659135 n^{3} + 12949437127834877284060468803451359716174765189283425 n^{2} + 187897041600065831048004954750639168812934931019124862 n + 1089337814601248961149449531339982136001657120150731420\right) a{\left(n + 26 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(59160318772068111413199386015130075399368803143 n^{5} + 8911424324709309311398308513034439893613394496620 n^{4} + 536263673783150973345811525501248490961937077325085 n^{3} + 16116077707460730020923519901830910493862106759691870 n^{2} + 241887389795761325149463115690442329772968738116892812 n + 1450612570300225472269664478800471850150697875459190170\right) a{\left(n + 27 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(97994820042341813830945469434216847893636359913 n^{5} + 15774683766378442693388074545606309563664042568913 n^{4} + 1014321069270289197578408582266961336150451526177787 n^{3} + 32568095472703308087973547524597644808423118058985051 n^{2} + 522207404741022087166717499593168004560312193197175388 n + 3345385329308170647370134043159872899387475112101098244\right) a{\left(n + 29 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(102882911849992942609103569509589950912088015269 n^{5} + 362603580241717523519706448590427126000897657786715 n^{4} + 57551615313421096359323266491406941988248197084172215 n^{3} + 3492272260399932787018974350844012889056680091214283125 n^{2} + 94644248898747871723220826488459709368151738658544221156 n + 963707716687914282651586714660017511365279760314112926120\right) a{\left(n + 39 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(248788149943290496665130383113332267715993359783 n^{5} + 38747136781703369175930620817226428191227430274435 n^{4} + 2410720705750961693341899532687306207420036414549815 n^{3} + 74901497988943304723414973376564962239506820588733045 n^{2} + 1162242997609446745080291375494383228292499888964724822 n + 7205771502731384644089314128886083806902450355125208300\right) a{\left(n + 28 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(312968992268888867007270980919184314484295531009 n^{5} + 53796200403580968570225880664301023201560572527471 n^{4} + 3692267394976285194437886283873239345868562134282943 n^{3} + 126500427289745330938490897895057420567118848051848281 n^{2} + 2163704379768311067065069479513238556366277010115668012 n + 14782412588109043432114688289483950438540074665232838076\right) a{\left(n + 31 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(376612698875580270005667665189981730500205590287 n^{5} + 142761172128174713319683777260985497743153697759115 n^{4} + 21645099456023186106975176072647340011200386578101105 n^{3} + 1640788884634933393134207395528550288946779905100032365 n^{2} + 62185442108728154393113054749064743385282786654731095288 n + 942663884955130281299130702987518974860194199515064551760\right) a{\left(n + 76 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(378154219770081929670843179793261863404677771083 n^{5} + 145240832419872851784739598718475000645900600158555 n^{4} + 22312424015817798734153389969312730109300892623834595 n^{3} + 1713769775886451826262396867085532474697071330040866325 n^{2} + 65812035252934682844818746086859795892674954858128089442 n + 1010868499765043821932703063792902041177493093018500609520\right) a{\left(n + 77 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(464286332629246333205492418987342340817070608213 n^{5} + 168969208280887738932222950060878881973994904026873 n^{4} + 24594965550462686260656638062030768156081538491653963 n^{3} + 1789824459017972371090400895476035551359600377225353367 n^{2} + 65117654035708894521085787258530752834755965235322595336 n + 947544423080139867724876090681932216312219275028549912648\right) a{\left(n + 73 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(659985255636772391014102437206371450650578651409 n^{5} + 243531764667955690469534131686656834684170087588860 n^{4} + 35941890207096666033925776059613375412162491673554245 n^{3} + 2652033532939182613397480196680541636525879360235940790 n^{2} + 97833757729811513286228003786875798701040504396651612596 n + 1443506845102339972261527561085675712396339723202334912200\right) a{\left(n + 74 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(719828907487279034740872711160651443303588024709 n^{5} + 269244353286723287400775939831908643106903472346655 n^{4} + 40280378598502518503167767349231565601630193474594895 n^{3} + 3012861872659903319153449489679927233298616381342173305 n^{2} + 112668550098438849685139822250341444138100143340622797816 n + 1685206066645595724553287793516061891941557512350716862740\right) a{\left(n + 75 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(904559182334698451341889877958189605630994533459 n^{5} + 150469034852983163410537308982089245539736943038785 n^{4} + 9996508030679289083571755096249347882899045837886425 n^{3} + 331584350489331317300032839590543802145289297663641415 n^{2} + 5491908345929618599983158224518117427931177252548170696 n + 36338016158703337561051832209672229687460311479041000540\right) a{\left(n + 30 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(2035509733571356405378728746609761076802938927077 n^{5} + 390716808070740751389609846061575467793627315313870 n^{4} + 29556946520916023478892807068065706822993371479873079 n^{3} + 1096744373214827870546933324470604099466452966345161916 n^{2} + 19831347662097843566530744756910648164932671152227997416 n + 138305935524405361411081934069046379052958256022650873506\right) a{\left(n + 41 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(2302750188607479216278397398712678838459764486875 n^{5} + 474580888551350800523961892303621842272121124618335 n^{4} + 38909850892547644558911097019872645199069470068556261 n^{3} + 1585117197868380907797807793463782452558288331342595845 n^{2} + 32053855282294216599050982813208217022583980129103878536 n + 257065703326120959796935252669259110264794379451339946996\right) a{\left(n + 42 \right)}}{14545846272 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(2532426994736404529539027079312773575192154542131 n^{5} + 449928821340991075733394012768832655561526445943735 n^{4} + 31907614836691315535632427378709239194581880902585595 n^{3} + 1129207046250292765830275488282701953221737277871816905 n^{2} + 19945612731320089798928565311561965502337309791058444114 n + 140690187590119150088377111331706252995873252637482601600\right) a{\left(n + 32 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(2668344028707930807885710415692737066340446692024 n^{5} + 508037040866845222961638160484826932615303013236325 n^{4} + 38558358179722572994653799804578051257460752912723215 n^{3} + 1458745817113670764622681572799493120735850243416497105 n^{2} + 27517736300992010403257570153484999144567078630779042411 n + 207120096046582195909855270632178604822340598318269620340\right) a{\left(n + 34 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(3411378114858679636164737216365447695446450041669 n^{5} + 675037670216676021319939262302744212747072976254360 n^{4} + 53173121058137865647412333199679080705704765388588655 n^{3} + 2085421037958097013022112781595545473026761115557672100 n^{2} + 40742515795703981194870342973102203585249656205589466726 n + 317338953142037352882469489885622711972865098736684699690\right) a{\left(n + 35 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(3784569020898096633649377819707360159560711628701 n^{5} + 833991723006306718817140505239222836588850472017345 n^{4} + 72467926168771379886609022868605176824749983439440465 n^{3} + 3112698527338077184963470404830338633524131666942408805 n^{2} + 66228681961808757449336908581621224257869405482114193764 n + 559298071405157296339753446806720767330959442001638215060\right) a{\left(n + 37 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(3820163587344860206470789803656021893070274713949 n^{5} + 702052867013891198766592523071893474608785610676855 n^{4} + 51472932507789808617187168750351319818782922691278365 n^{3} + 1882455588130223512293197014332835422330606294901967205 n^{2} + 34347762357573519198002565002323658900097164866877029186 n + 250189628962294812870090075016714361839771579483294347360\right) a{\left(n + 33 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(5277344403182139961225866898154229692403416639497 n^{5} + 1318806327715173110421091611453538831833492750360135 n^{4} + 126390681174013844783862413217895910002878971082675835 n^{3} + 5883756075263317119407264236193949040385231846641869105 n^{2} + 134089737626056689855057286428059442236217037929010029868 n + 1202839102077315669126594734538052369871010699893802009240\right) a{\left(n + 38 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(5359439621629683404055846088909894468833904542449 n^{5} - 296553640571609099428306831274781201010055006886425 n^{4} - 187758620191066368403421661074290540962447932658183715 n^{3} - 17019528042958463506311431880061272745926604481227339075 n^{2} - 609520602894961738054924593886776424932432409620873904534 n - 7868752478561321221804208601027211490762501118576290781900\right) a{\left(n + 49 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(5428748977408287219593420655712892359151721142609 n^{5} + 1807350129102626289144765147548881692641720430300181 n^{4} + 240604322730805639680760407592637742222896120784128979 n^{3} + 16009820357674186918048475505347518411072680434112440639 n^{2} + 532456656004819214369022490554324899797575009780769368836 n + 7080749377199543663762899458749186112675619145451263144652\right) a{\left(n + 67 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(7800719680374841564702202748865119017214031085061 n^{5} + 1615155821313747836563599037661510834168383223320285 n^{4} + 132762417352163643298980490282849544773885555090537295 n^{3} + 5421615188021099448701039738867386819798706665135658915 n^{2} + 110095466771574286710629599609586022456888496291901856364 n + 890026510751446089275058635210842461722687105644055937600\right) a{\left(n + 36 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(7827242876306493974557796204077376390007966490319 n^{5} + 2808797066447126442359104396842523051311707025978185 n^{4} + 403125625456580512005840910135988891831212668355562455 n^{3} + 28925252119511231634339829289603718905285474164448044135 n^{2} + 1037597041580853589230017482653184348743409280282357309706 n + 14886175774861335831562680603058172337782474366964589995840\right) a{\left(n + 72 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(8120121192646109379842836291265667062043747797591 n^{5} + 2467538318138816628813151246372948125259712279379493 n^{4} + 299427929983569482657683574775089552777841701586900405 n^{3} + 18133941871968989914370842669177347682637893871046487235 n^{2} + 548010705403698154499521140791602488228513831753220784416 n + 6609784878982319273499601750495340013341033785475835917748\right) a{\left(n + 62 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(8474933173756819057537463881248707812253724984503 n^{5} + 1364050272409898553745250247945312412093966889492335 n^{4} + 79776695210865195620869139374956810058863131499841435 n^{3} + 1894315332504641071888493680057198760020607687783483345 n^{2} + 9325395083250451900473659695878302073989712399624688722 n - 176319701474594657357195808596522482927135278297623665980\right) a{\left(n + 40 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(8623690160072616853513031621968699301777448852809 n^{5} + 2307176458108723815313478587843766458470727906838225 n^{4} + 240499712635772926494953310856435989500261646882817225 n^{3} + 12075611875038079175199800280126099362057142768984987175 n^{2} + 286255332415956558101655186357006901972960550099652818586 n + 2455827212447625650073256282127633515497526505913835380900\right) a{\left(n + 60 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(9806020388109988360676024351594418894914216166177 n^{5} + 2121274222831593712476060536459144502421157957517919 n^{4} + 183006311737435954278956953260739699725466891198995269 n^{3} + 7869006909148013794867285747179408580567308910283221205 n^{2} + 168596682368994052607699504967394703709873013128781863862 n + 1439498755464090062368484624887965154401629454793618472064\right) a{\left(n + 43 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(12192573739243936576203993171980512883155213300405 n^{5} + 2747724461244921489875535184087944565893299348746353 n^{4} + 247116339823438527188319476032396374922185252277166729 n^{3} + 11086149053763609768099702157668802916509468003593612039 n^{2} + 248081096597515580463800194395142104940162647520624307058 n + 2215159156381748574602530776492250034751106914617002304424\right) a{\left(n + 44 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(12639615984902770534096517705746409901409316300979 n^{5} + 4471126721348521841825300054987421171372220167480895 n^{4} + 632554695156914198879266081276176394988961675564386815 n^{3} + 44738860582640500182211849520330996380610043644320942145 n^{2} + 1581885661217073256040040056165798875845645817593347926046 n + 22369489370283046269574373127300286436454911962182553518000\right) a{\left(n + 71 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(17828912864397747547647190154973765007859844733963 n^{5} + 5501303072971110728121517299931872192001527789843465 n^{4} + 680755882368996751183029777961795740127623138607237095 n^{3} + 42217806594600323552059371645936923831383762415426919915 n^{2} + 1311786493989313321482783532380041413246741364299165202822 n + 16333231274824463919016481515980916525559821582575478557660\right) a{\left(n + 59 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(19529733957713792171425276451153593052569870824757 n^{5} + 6808052448166661315592498724795540731178376260025955 n^{4} + 949148941294805736245278348855337166585348710502931485 n^{3} + 66151216058196330926221688621712466746899503499527778205 n^{2} + 2304783873711115390286295046160379805543647625364477546798 n + 32114283794355097124676713524857921483396082395622554150240\right) a{\left(n + 70 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(20288442356597430037166695867977180471358466260761 n^{5} + 6861586199776868317884103677096205600712411025277475 n^{4} + 927998427539778406207475758347682129609149163597973225 n^{3} + 62736728669770036652358728751773394347419636992979973845 n^{2} + 2120035437485457599336612668235550432758147159090998465594 n + 28648070652441518172171217436549412484540302972843145076340\right) a{\left(n + 68 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(21288949347086499399074881708053063297025017042944 n^{5} + 4504738745779859942995613267721467327594664461984675 n^{4} + 368249530459344711910454638290443988946937278367252315 n^{3} + 14279169458691856046899922402309678294371322813671015555 n^{2} + 253137470244127420061866774499705240645765256915526240301 n + 1488321696698048342900030168240593151847076397711940572730\right) a{\left(n + 50 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(25581918410724177754579704084652207574969531593384 n^{5} + 6632444661797992336183760154399386204769261932301825 n^{4} + 681822215195051407922491884416683951116682431266633335 n^{3} + 34787740993675655814383132029576189403788076236942589655 n^{2} + 881851124908152114221133807053379826201610827202299952821 n + 8892580178658644477499265018055739627799248611095468403400\right) a{\left(n + 47 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(27218375158849597227607147868185772494850326994297 n^{5} + 8004559662154519137795003019153728408133088404693025 n^{4} + 910400657500364860070213362989890350202376515108780585 n^{3} + 50539753375283608715685889136835865490831973367754021695 n^{2} + 1377649327631595754189582207113901973952762807126551672498 n + 14810419989163271843140210763154117017323615510830990248340\right) a{\left(n + 48 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(28367575343415112686653752224488678911752512553953 n^{5} + 8374749231214864230425676001447628415648249105477745 n^{4} + 985516312059126091680719207669649373547676473079051035 n^{3} + 57758394881224781603200901055213171465589621609859115515 n^{2} + 1684971192091573262898922826321383386121140659099731317932 n + 19561434221914672829339432108854901961458847603364553672460\right) a{\left(n + 61 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(28830179310391347164084375737932289340765167391533 n^{5} + 9900951420018394543543768867886704174023303170422185 n^{4} + 1359799353281340443120962908190274919351481912936801045 n^{3} + 93357079663643224149150668860774593248217779173802018175 n^{2} + 3203983031505803149603369702220953141414619236082037758062 n + 43973338806397124303285795927942185601487734879134445256840\right) a{\left(n + 69 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(33540334156799091055503749171900727059184376021619 n^{5} + 7862282816246621521601415150231356431346502636623705 n^{4} + 735282173417616186827382757328839237854098840645317380 n^{3} + 34296050238983332449959353622879909718176985065048387365 n^{2} + 797920473978973193281402412387546582081553544200012125971 n + 7408366861744188655446763129026397640679706169086890779460\right) a{\left(n + 45 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(34371243732381705090132069923302791710048406608551 n^{5} + 11258778245275087917283620726246905839099303744654345 n^{4} + 1474576423280974602722998522651590203709522363297612345 n^{3} + 96521502296200295218568700289370524351900727921294244035 n^{2} + 3157560851639494143951158289647131221492109031787587769524 n + 41298058446982874642224318819297957594847218631816758953000\right) a{\left(n + 66 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(39585985377549869224749979328091544833872139710086 n^{5} + 9321556804238069262474625686609440685783297066859535 n^{4} + 871655563303798402916838351807161844591460536028759920 n^{3} + 40404069876304457627638983135431834413606779120064514905 n^{2} + 926708575508173117976507038941883371931454305238938525274 n + 8393093800656450755723676457740547636039199933058786940140\right) a{\left(n + 51 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(40187386433583139229018957302936994280223202518186 n^{5} + 11450963026500970518805598754258212384595358258600535 n^{4} + 1306697146413409304516419597296545594222181691004888760 n^{3} + 74648475610341692650784212340474292291019680820249766875 n^{2} + 2135015495128680819122315856559994347895662019089817078624 n + 24458206175623442856898686960008629358408068259981717109120\right) a{\left(n + 57 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(45799777551282884416265576201496085918697281604993 n^{5} + 14220582001984979327765867102125976689708416651990095 n^{4} + 1764305973230142887503754735021772395858864324880021895 n^{3} + 109322522667081454422586232252111569267093198350155122585 n^{2} + 3382888116425324369747167155117061738489934987993899410252 n + 41817372473040264398775093970717822585198078727353582749540\right) a{\left(n + 63 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(48708745872892852302971958038989555764327435233143 n^{5} + 14275223302697759054550174281501329257279112778371875 n^{4} + 1676500198861104536200464321078652296173377011172912145 n^{3} + 98624533451078771116263236826344385983772418637287244145 n^{2} + 2906221618717169790544036451948970992592933810164925383172 n + 34318040760462297140150659735515832007034000030461076658920\right) a{\left(n + 58 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(64429936003515310059889691899295214605120780732229 n^{5} + 15767490044757586496617109389586027485350138128884055 n^{4} + 1537190171377064563799896337841258687365372595357658055 n^{3} + 74655058516959486077936261160880767731661879295478640145 n^{2} + 1806739523852937265056551077907296645425041286864590861476 n + 17435791173373603716144979072574999851703094716965754796120\right) a{\left(n + 46 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(67805381221333275644274441411142625564477854529263 n^{5} + 17910890873991047058008297044219825984669483207772205 n^{4} + 1892315083427756365813337099587991690345504196731460490 n^{3} + 99958371148445534958771841716591978292618561331845134555 n^{2} + 2640052240694892292151070573736747985009238337236699921817 n + 27892265633515418135283780011765894947987351774433453850570\right) a{\left(n + 54 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(81843063775406483227080830728762891786525496629809 n^{5} + 26361117310186321774561492178904499302963524853256705 n^{4} + 3394460765091276162880361639535023775270019569527537465 n^{3} + 218423610661539325616961827527174361295708489993320409335 n^{2} + 7023213763966736274470022533259520379240715831720384897766 n + 90272245790368357782253983205842935310665437227698343150600\right) a{\left(n + 65 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(90637392500468324024064358891192558250900603633791 n^{5} + 28682039200559182480882845477298833385576366879560565 n^{4} + 3627892242966787916745032385025611107622648745943204755 n^{3} + 229261113843414825849853896317394694454416490072110342715 n^{2} + 7237959991092966930604897783928085509945717792147464805254 n + 91322491486207066150633497164074035255679586896582070429160\right) a{\left(n + 64 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(108315693611271467301901318373087314254440563660051 n^{5} + 30106046887762632372606186659962838762684490813185335 n^{4} + 3349784548476714750004537187995125126756195659458885935 n^{3} + 186516118731940980162192312918382594660606530915236057945 n^{2} + 5197302935558617574709731172388641299649869956507063329014 n + 57985278890244369178263495065273423993580063199091332210440\right) a{\left(n + 56 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(109637619257458912146645805905209558282600923543961 n^{5} + 27149861871317174714446471751166826505950831138656645 n^{4} + 2682543193407207928419238834204916524301666646282666335 n^{3} + 132160939997755354681264427209462776351351525404465474595 n^{2} + 3245762419981133037280467644729706108057044765853635489924 n + 31778799810454411023013844257416162832022047443499600713300\right) a{\left(n + 52 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(127955123470495994062556212662391440672493132040959 n^{5} + 34695296681788771922506253864997086610305441204994145 n^{4} + 3764582141589938417881657292412279487421328702609822405 n^{3} + 204329124798416840161122804549794345281766324057211509735 n^{2} + 5548001198370507421623243534025651913916002124172747541696 n + 60290985087933747074392116455892889386462544171633992474180\right) a{\left(n + 55 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(129370322685389559872198051760305247062448538214239 n^{5} + 33189942024435486807465670210921929333692109357385115 n^{4} + 3402988294990232006167026560228695126299989410045995235 n^{3} + 174299833264594883748013366531840494342329016040842797905 n^{2} + 4459711095368645268871193324928038044802362530544996848406 n + 45600625901215499516508144601664968077591881548114163316300\right) a{\left(n + 53 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)}, \quad n \geq 120\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 109\)
\(\displaystyle a(6) = 522\)
\(\displaystyle a(7) = 2561\)
\(\displaystyle a(8) = 12765\)
\(\displaystyle a(9) = 64486\)
\(\displaystyle a(10) = 329766\)
\(\displaystyle a(11) = 1704944\)
\(\displaystyle a(12) = 8900758\)
\(\displaystyle a(13) = 46863539\)
\(\displaystyle a(14) = 248584004\)
\(\displaystyle a(15) = 1327233740\)
\(\displaystyle a(16) = 7127315219\)
\(\displaystyle a(17) = 38470665087\)
\(\displaystyle a(18) = 208604032649\)
\(\displaystyle a(19) = 1135806258088\)
\(\displaystyle a(20) = 6207293801222\)
\(\displaystyle a(21) = 34038332741575\)
\(\displaystyle a(22) = 187228984771937\)
\(\displaystyle a(23) = 1032770485798140\)
\(\displaystyle a(24) = 5711645182760584\)
\(\displaystyle a(25) = 31663400400960277\)
\(\displaystyle a(26) = 175919871981562188\)
\(\displaystyle a(27) = 979408261269289674\)
\(\displaystyle a(28) = 5463134486431692298\)
\(\displaystyle a(29) = 30527646047153001509\)
\(\displaystyle a(30) = 170870675990639430051\)
\(\displaystyle a(31) = 957897031139777554678\)
\(\displaystyle a(32) = 5377812525712283549760\)
\(\displaystyle a(33) = 30233623594948372187672\)
\(\displaystyle a(34) = 170191514217565116569227\)
\(\displaystyle a(35) = 959217539588436786710579\)
\(\displaystyle a(36) = 5412510745427965922600746\)
\(\displaystyle a(37) = 30574273149100783601003862\)
\(\displaystyle a(38) = 172887882560073882443578415\)
\(\displaystyle a(39) = 978590997529013392597962030\)
\(\displaystyle a(40) = 5544278146143248312629569687\)
\(\displaystyle a(41) = 31439551696835341758521056498\)
\(\displaystyle a(42) = 178433752278876019237816988323\)
\(\displaystyle a(43) = 1013514675517078545855530706459\)
\(\displaystyle a(44) = 5761288535941775841496387975380\)
\(\displaystyle a(45) = 32774115824128238856040919659610\)
\(\displaystyle a(46) = 186573642351564466877288408115310\)
\(\displaystyle a(47) = 1062831920726434983599803055242221\)
\(\displaystyle a(48) = 6058452787547189921674635466062809\)
\(\displaystyle a(49) = 34556542763744724371808511799161808\)
\(\displaystyle a(50) = 197223891733034254218956623144540496\)
\(\displaystyle a(51) = 1126261722234182192051519902284244818\)
\(\displaystyle a(52) = 6435171819456319975070936515776289159\)
\(\displaystyle a(53) = 36788576878602333884149262505909122466\)
\(\displaystyle a(54) = 210421124467149863755455815899711870113\)
\(\displaystyle a(55) = 1204151536060345779544952818081092858268\)
\(\displaystyle a(56) = 6894150905794115299479300386594788436580\)
\(\displaystyle a(57) = 39489445487706105555652810906970737722889\)
\(\displaystyle a(58) = 226295041629785383354222459413668245025395\)
\(\displaystyle a(59) = 1297347393050177080298253054577938858228051\)
\(\displaystyle a(60) = 7440782046217240096618918705743276339222872\)
\(\displaystyle a(61) = 42692938918058092950678731630540923163129766\)
\(\displaystyle a(62) = 245054727582866757479289297995139148247977725\)
\(\displaystyle a(63) = 1407130394737244565307788709363760592070754548\)
\(\displaystyle a(64) = 8082854058448832819666400182022659986430737404\)
\(\displaystyle a(65) = 46446116488769281428465511431260861471191066049\)
\(\displaystyle a(66) = 266983064817678399236541693792944293068172991526\)
\(\displaystyle a(67) = 1535193863981221800733594444085606885503872907573\)
\(\displaystyle a(68) = 8830467637995767030664226541100645591068602534626\)
\(\displaystyle a(69) = 50809051818744637246874270125104694859027287952720\)
\(\displaystyle a(70) = 292436450300914935600035310174901416160509101718592\)
\(\displaystyle a(71) = 1683647704723214097241701631070027424604669946309106\)
\(\displaystyle a(72) = 9696090950176640071463399542035659238021054981808781\)
\(\displaystyle a(73) = 55855308688998911951466794106419886045261240603670322\)
\(\displaystyle a(74) = 321848334765878118842189302936725123969179700232798966\)
\(\displaystyle a(75) = 1855042901224600244703876295636975883600172531502211153\)
\(\displaystyle a(76) = 10694722033764464720157637371255430059811829478613291173\)
\(\displaystyle a(77) = 61672987200970301152934656923721551027124868555703783297\)
\(\displaystyle a(78) = 355735827221479317199614328894673339236114871957088010776\)
\(\displaystyle a(79) = 2052412599602507534224652541138303741763265033853099575987\)
\(\displaystyle a(80) = 11844141480206563303208831978840694119707945306753752186357\)
\(\displaystyle a(81) = 68366264401415641674035231110436918688965888062134200451255\)
\(\displaystyle a(82) = 394709023575665352699313929936258116466638925532928143151112\)
\(\displaystyle a(83) = 2279328279790092960970455891444742746794115557477882166992081\)
\(\displaystyle a(84) = 13165249140152053758944018542499456164729013475343889315549786\)
\(\displaystyle a(85) = 76057405050817855494918519901859419268553250420461852257000944\)
\(\displaystyle a(86) = 439482977523449595865862645027807160695066401145697244415861775\)
\(\displaystyle a(87) = 2539970838363314226830794490692526891699840190956470442663217657\)
\(\displaystyle a(88) = 14682485291303596348150461809205488451933958230821047336027781693\)
\(\displaystyle a(89) = 84889252450353773643051172728790066485529453083094937340634534336\)
\(\displaystyle a(90) = 490892408415640455370879117080866662306813800367786641963694792973\)
\(\displaystyle a(91) = 2839217319356149559509898932548484878751205796306636367864493400740\)
\(\displaystyle a(92) = 16424341493719164241554588979244484148082024782977649180306459651532\)
\(\displaystyle a(93) = 95028234471126469938196178389583786323728302859779813221426232887697\)
\(\displaystyle a(94) = 549909374592922880575208421295310944369018997963899794701125625077985\)
\(\displaystyle a(95) = 3182744744535622804788621472490557317903453694277603129371597621080375\)
\(\displaystyle a(96) = 18423970200508323788332866285078103248659249109207970104933418619577614\)
\(\displaystyle a(97) = 106667940734684009175805452921073457800661470718720830455736688831562140\)
\(\displaystyle a(98) = 617664254101880619996551148507485848537592562212394606420881025452897635\)
\(\displaystyle a(99) = 3577153117059391220467518618592707304978368436384264027761747520392796414\)
\(\displaystyle a(100) = 20719905628617229723567267464530887408781166038584096806902896031670924758\)
\(\displaystyle a(101) = 120033345979552945774944516168552183042844008943185461201702468105112264697\)
\(\displaystyle a(102) = 695470481275739899763863313620983176707973871518157294510586734367417421264\)
\(\displaystyle a(103) = 4030110270446764602651151820930491969681577518076956352784057153499385239045\)
\(\displaystyle a(104) = 23356911765669294635941884832501908797670266162715069375040217714588705822808\)
\(\displaystyle a(105) = 135385773734037650062658964725047454346250980423662879305135433676646738804780\)
\(\displaystyle a(106) = 784853596121853301161359172053559007646052917440328327704864358363144788287470\)
\(\displaystyle a(107) = 4550521853262841467392154658877155944732630967645108681010330960936133613207253\)
\(\displaystyle a(108) = 26386976926387521747479295197603502992609266144594999649552216723065879962624118\)
\(\displaystyle a(109) = 153028714705476031245949698495534632965513751186273805005326249665531795529227652\)
\(\displaystyle a(110) = 887585280116574718210958078627266755808432141878889508580510825147575699732981556\)
\(\displaystyle a(111) = 5148730412104694386825723905099150205998524092658216856755064388172129873250213457\)
\(\displaystyle a(112) = 29870478152696093296253114515131595946442750826953223127344373084432988708032388988\)
\(\displaystyle a(113) = 173314636736574262719373670773119611087410403889246015815310848077115058826076356399\)
\(\displaystyle a(114) = 1005723181968386611840908292972758691839545594958998186741220073942541777287131614627\)
\(\displaystyle a(115) = 5836748289103464144282163329164900701761686628248520227809556026367453760855478195419\)
\(\displaystyle a(116) = 33877543126785889849290984206404445771398843268094940646029185287246625036029196360740\)
\(\displaystyle a(117) = 196652948605175552965874858704726052400999633361381736249428866461051374390658388064116\)
\(\displaystyle a(118) = 1141657484797830645210540477556747591258442679978259753040435435910996535323301987788577\)
\(\displaystyle a(119) = 6628529911001400668188802412943528696043457223199587052068903945707160013435411969004539\)
\(\displaystyle a{\left(n + 120 \right)} = - \frac{729593028722237115090046399 \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) a{\left(n \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{3757565 \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(4597272114978270175847 n + 26729001771514401796417\right) a{\left(n + 1 \right)}}{29091692544 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{1715 \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(527937431730021286031828395 n^{2} + 6660433611395282295159319919 n + 20958280205190548034353100046\right) a{\left(n + 2 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{245 \left(n + 4\right) \left(n + 5\right) \left(84695530410226572338035409057 n^{3} + 1728325718965331476981147747626 n^{2} + 11713120640277289155922400170261 n + 26353453760474440189506245378508\right) a{\left(n + 3 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{7 \left(n + 5\right) \left(25059469893931685885496194462778 n^{4} + 731367283034088148906423327790125 n^{3} + 7967171681870042740395528664545440 n^{2} + 38380546524375378655768725930902125 n + 68963353662584869349091395044915782\right) a{\left(n + 4 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(253579 n + 29484109\right) a{\left(n + 119 \right)}}{1734 \left(n + 121\right)} - \frac{\left(18401287 n^{2} + 4260294567 n + 246587131020\right) a{\left(n + 118 \right)}}{1734 \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(265327205 n^{3} + 91735987434 n^{2} + 10572380739130 n + 406144892307768\right) a{\left(n + 117 \right)}}{2601 \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(9511268414 n^{4} + 4365154237554 n^{3} + 751251405725713 n^{2} + 57462142293455523 n + 1648173683985408288\right) a{\left(n + 116 \right)}}{2601 \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(5429159634529 n^{5} + 3100689582045935 n^{4} + 708327481601509040 n^{3} + 80904015586213739440 n^{2} + 4620258736181841863556 n + 105538953813055210507680\right) a{\left(n + 115 \right)}}{10404 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(257154583860724 n^{5} + 145617404123518120 n^{4} + 32982467666679939515 n^{3} + 3735200515776607091450 n^{2} + 211497709167419935778781 n + 4790142459057007920160890\right) a{\left(n + 114 \right)}}{20808 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(10398468289260798 n^{5} + 5837559481275752180 n^{4} + 1310825017520618413365 n^{3} + 147170124012830022924445 n^{2} + 8261448228785391515123742 n + 185500191405528859888177920\right) a{\left(n + 113 \right)}}{41616 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(1465744104526173919 n^{5} + 815669174868623082925 n^{4} + 181560722017556765124195 n^{3} + 20206532427323340674563955 n^{2} + 1124407654945583648305636286 n + 25026952170255309966505081440\right) a{\left(n + 112 \right)}}{332928 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(45713482595962546399 n^{5} + 25214321059440852833735 n^{4} + 5562917329533935324916195 n^{3} + 613649493314236635793820245 n^{2} + 33845479972856445978675676226 n + 746678355776027345530276825440\right) a{\left(n + 111 \right)}}{665856 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(638427138512883854819 n^{5} + 348993256363902933574545 n^{4} + 76308935822532728242459045 n^{3} + 8342505861644201457558821595 n^{2} + 456016427210048255874163761456 n + 9970509891227830440462077479260\right) a{\left(n + 110 \right)}}{665856 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(8059904126429153335877 n^{5} + 4366128903574556530606995 n^{4} + 946054441497165640317818280 n^{3} + 102494061175246632905604297750 n^{2} + 5551934821792050952920471545128 n + 120293780983572640604272449825000\right) a{\left(n + 109 \right)}}{665856 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(74133440488184202604759 n^{5} + 39792615237441069978566573 n^{4} + 8543658393680661375814639255 n^{3} + 917167036231650215291899501939 n^{2} + 49228461112137249930375861451066 n + 1056908575309581893465143819532424\right) a{\left(n + 108 \right)}}{2663424 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(2603039692880767050363651 n^{5} + 1384373987438609249494818615 n^{4} + 294495903157194823904694166385 n^{3} + 31323362661445458374289885856775 n^{2} + 1665792445143345304552328215523694 n + 35434545565942950469571208564267480\right) a{\left(n + 107 \right)}}{1775616 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(75743865544441612954228551 n^{5} + 39908788311751849375143005185 n^{4} + 8410908296291628166384463565590 n^{3} + 886299779152641509391104099776385 n^{2} + 46696235235845356586222907005384359 n + 984094179525609143692390757874731010\right) a{\left(n + 106 \right)}}{5326848 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(1358633906365305674885814953 n^{5} + 709148142238747817678499351435 n^{4} + 148055602117331006203565192984550 n^{3} + 15455255349064253124122101845543540 n^{2} + 806661049870055928424931414419453432 n + 16840680556119734419619483125124918640\right) a{\left(n + 105 \right)}}{10653696 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(180921216603945151496237875873 n^{5} + 93541170290832537036641786942675 n^{4} + 19345035256105960672398852090986325 n^{3} + 2000321440278731009034483856961164045 n^{2} + 103417418065386082425222547119717734522 n + 2138657874226951622549823485472956494800\right) a{\left(n + 104 \right)}}{170459136 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(560688918790959497896460039405 n^{5} + 287130431792352441800203160444477 n^{4} + 58815254472669636593835056220545973 n^{3} + 6023714131280535530735147663773702051 n^{2} + 308462548046020842770182758026456843470 n + 6318214017028537752046557264140851954416\right) a{\left(n + 103 \right)}}{340918272 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(20275799977909265428199560061221 n^{5} + 10283567524433316813654869913458655 n^{4} + 2086234896526169254755330288092449425 n^{3} + 211614934273946431322216677319290686225 n^{2} + 10732310473584719503637815763525795866874 n + 217717848646154525618628316817278421694720\right) a{\left(n + 102 \right)}}{340918272 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(34308551716657613091645032943321 n^{5} + 17232189356032390297221615345792880 n^{4} + 3462041201942403844802873935302444805 n^{3} + 347766558633560052183845872350247843280 n^{2} + 17466557322439297156130028776794474594094 n + 350897929437800994199898826881920799517900\right) a{\left(n + 101 \right)}}{85229568 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(1742447671452346997114048954467867 n^{5} + 866627890924594204900501203759361585 n^{4} + 172408788978519115284741545528067760335 n^{3} + 17149445105994169632734303338556721398255 n^{2} + 852913076270883287106606253229936072816078 n + 16967333167770525978777427780687792544318520\right) a{\left(n + 100 \right)}}{681836544 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(9331408720970066702556813314409343 n^{5} + 363476398865553763625367512386990755 n^{4} + 5632826294887742380631705407805942215 n^{3} + 43397363068086111741590820116722401645 n^{2} + 166166239779956048051219424137028611842 n + 252878469267491292532888033761971022360\right) a{\left(n + 5 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(20794159748923036389768098637491203 n^{5} + 10240246326470183773110040974306890555 n^{4} + 2017127671337818701275459368918359089195 n^{3} + 198664576349600319711782063554369429989325 n^{2} + 9782990795574590251471177629723604026830802 n + 192697952241492530288774132092075027842116280\right) a{\left(n + 99 \right)}}{1363673088 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(101615333213647521364795017123109029 n^{5} + 4441057886323199669514535771468803475 n^{4} + 77339983260970212635969409805299769345 n^{3} + 670692010990115946401904600129137279645 n^{2} + 2895633478756890483289249808076604896746 n + 4978008995354739440231155110707331019200\right) a{\left(n + 6 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(116844296531466520461989184397010823 n^{5} + 56968198027264684015463780621182572205 n^{4} + 11109935722149299715060538884835417233925 n^{3} + 1083315150914692110101464214498861574143375 n^{2} + 52815620896666492175856242485781180195003252 n + 1029969457622721097754054804685619108528581060\right) a{\left(n + 98 \right)}}{1363673088 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(931110609181271320308841053991083959 n^{5} + 45103315724281582859014640106541150695 n^{4} + 871493994953277078376045455392181524015 n^{3} + 8394791812088942101458045449093680896345 n^{2} + 40306412813307786425858888828474510956346 n + 77157003305956127193743467839152879092080\right) a{\left(n + 7 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(1034143353035341203918554918393762776 n^{5} + 494072742644987415915312301676037540235 n^{4} + 94418139313844515124449285456756943799555 n^{3} + 9021618861563828415631359641785621461990725 n^{2} + 431000822485682853255155878313021485022199669 n + 8236190553612219630014483598698298664192564480\right) a{\left(n + 96 \right)}}{454557696 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(1238758235753860795524707608604173801 n^{5} + 597896148511954829223375574397836319225 n^{4} + 115430135143607485963189156445046539074285 n^{3} + 11142355359669218945068625534441990674202335 n^{2} + 537773319502380035961371998239425356815161794 n + 10381880470698546436752387684755819174971872960\right) a{\left(n + 97 \right)}}{2727346176 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(5005520244813112560020558951442757045 n^{5} + 289519024219424801212324640396888259695 n^{4} + 6688143344932756835989522332349238914395 n^{3} + 77128144295473323355958523447776973320605 n^{2} + 443981225272845377361769552242039663938072 n + 1020502954498072800749939156046253881072828\right) a{\left(n + 9 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(7319363769469321628160256039854155851 n^{5} + 389057228880134614532700340449102278465 n^{4} + 8255141825372606135227019889636123031515 n^{3} + 87391382021728285050029698521771565603855 n^{2} + 461525264725568427925447829574840425460434 n + 972620464601410558826168603030354879475240\right) a{\left(n + 8 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(39217198824463383037822681875367628327 n^{5} + 18544398485727960589303397005620187363415 n^{4} + 3507546672212249861814064813195014593751535 n^{3} + 331710174611358836460229515038795707999345865 n^{2} + 15684794800457364641271511056501939612210604938 n + 296656370077955462708123064890240071832835912640\right) a{\left(n + 95 \right)}}{3636461568 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(79930196383805511300679734198199824865 n^{5} + 5361115755148491519864842914878448530421 n^{4} + 143705455561580107254490626897088463122046 n^{3} + 1924276737017600183436516676842733768408805 n^{2} + 12871452339687892268610608051711329918860321 n + 34405699749810913382919266652926432840869866\right) a{\left(n + 11 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(150392879379354198072031910161449787453 n^{5} + 9397353993203782124767992478002687928435 n^{4} + 234610504742207010945820058730061254940935 n^{3} + 2925123210640854003556998982528484240557085 n^{2} + 18212691635185033668699150661762187609260952 n + 45300545370504319172103247620942546375883260\right) a{\left(n + 10 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(376895887302962573038821433633623714132 n^{5} + 26974429713960461170677428118101412991340 n^{4} + 771645804126612878516398897742584143891385 n^{3} + 11028868611904576319842814546278118199825196 n^{2} + 78757302544685939427830306716328415986948795 n + 224794089300211760209298876169390415112366832\right) a{\left(n + 12 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(528546046305064733809884685716734384159 n^{5} + 247342335653544679461431393900880493306965 n^{4} + 46298692698635373561781073462733505408483155 n^{3} + 4333150140585698490970506693275942462841093435 n^{2} + 202769937727139038129095674805933993668154863566 n + 3795406442062183051925097454425155297633015893680\right) a{\left(n + 94 \right)}}{10909384704 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(563331456963732146381415175630730052528 n^{5} + 260861991518909986887969425627763236142875 n^{4} + 48318376748625350644585283010115982911892980 n^{3} + 4474852098234393829170062290847487508430766565 n^{2} + 207209629341396532078301543351074421213084467592 n + 3837922015381773036851044261115321875993081877580\right) a{\left(n + 93 \right)}}{2727346176 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(1217021181835945087351607513164929398977 n^{5} + 557604305039524312168362328455417724376195 n^{4} + 102190111748687717315904148910646079610351445 n^{3} + 9363894040052778692320257064793615599388792861 n^{2} + 429011605208020623595390632752153669447104585826 n + 7862064144771147465665172809559992430380796841656\right) a{\left(n + 92 \right)}}{7272923136 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(28934960505665335625956703621553686845764 n^{5} + 2314953600115808185004762380845319818419115 n^{4} + 74010403774576744990497346356142612178492800 n^{3} + 1181949976736284271812204242005005701183296805 n^{2} + 9429190626553957722392410234849425915140757836 n + 30062187603105002991024807321309907321705302360\right) a{\left(n + 14 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(31498696606271609717845191822732236248961 n^{5} + 2391389717514748031999742247034618020078185 n^{4} + 72567794631929072267269308186565794424686565 n^{3} + 1100257227411201351846099510232998272312252175 n^{2} + 8335083381395178800439409350918272684252226834 n + 25239907210352001226023109721591621230767041040\right) a{\left(n + 13 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(80181436807718962455335403877973230262105 n^{5} + 17885406386794917340712986477790474963994057 n^{4} + 1121635962175601251489670566658022067934385983 n^{3} + 30770406265234208788443248400611977948597794255 n^{2} + 393039357601903927202173837161390495008421021128 n + 1920625150255274795239050874559227308899082611256\right) a{\left(n + 18 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(120377183964796774487291326397104642658653 n^{5} + 53382396935301249348678653888636133256162673 n^{4} + 9469052398304938513412682811336980658990261381 n^{3} + 839807186136357064698459308497060039627094413915 n^{2} + 37240655342775974922164072854649975568229067929946 n + 660556142178171421310179025408486719846605208584304\right) a{\left(n + 89 \right)}}{14545846272 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(140685901078970421215978731557659974748453 n^{5} + 63768763136522186883457836185653079552678165 n^{4} + 11561659667961561454019216327670484525602800685 n^{3} + 1048086720276843007734770207841039189180798974995 n^{2} + 47504983307075229062655406975962154800422956347502 n + 861263589221004643345832382865231665318039402442200\right) a{\left(n + 91 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(188682073154582854486427627298576453522221 n^{5} + 16158597235927100749831170655018310682322127 n^{4} + 550610011133868605306168126871653910246290633 n^{3} + 9326242758981910819060677214386480102365335825 n^{2} + 78464297033898627712314607695038171102154005474 n + 262075255314647226315278422331002694816661463416\right) a{\left(n + 16 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(258115774918868663060551608930265927394309 n^{5} + 115730512143664376578439085974497482463891215 n^{4} + 20755629317611165147483979556097447689874486010 n^{3} + 1861181425406072635113317751548952053269751677215 n^{2} + 83446157282328037798393660370297545503725097395861 n + 1496507319711431565812114334629610413095118000890710\right) a{\left(n + 90 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(366187846411244853248950329479462748101229 n^{5} + 30592061926393672734763314219480454350857565 n^{4} + 1020393602654807812927950398618598598456977625 n^{3} + 16985682519185421510193409909550290167431057435 n^{2} + 141105342172531022038013690721525068981359298306 n + 467977377678991063851650927474878063924735044240\right) a{\left(n + 15 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(1616289158257119088616463841238010508339323 n^{5} + 131440690960229820590175562580547250619627935 n^{4} + 4123980947711817462708831734871107300704391455 n^{3} + 61268316493394132309500112623207811361293616665 n^{2} + 414953861027446480044864524104690697491965046262 n + 925262529746947458281569359750524957294998656600\right) a{\left(n + 17 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(2863669945273460870510160740336922585915836 n^{5} + 349090308314862985057570224878108648291128450 n^{4} + 16744220901312916587583396798617574113069073545 n^{3} + 396314807526481034489516990858259096603874215950 n^{2} + 4639666846469323477066763475043377420728763316279 n + 21530474700594496875954295772995894638478456159260\right) a{\left(n + 19 \right)}}{10909384704 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(12051911801403199663282995365281820747406803 n^{5} + 5285343070782523052818613154688485940100189605 n^{4} + 927138769488045154530170570956789156960330913975 n^{3} + 81316872687618539755210216966691919648568522605755 n^{2} + 3565997143653375797524258993632342340726259383095782 n + 62551211672157410412976403105674966123830064832760720\right) a{\left(n + 88 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(12802570493086210256680610000912931701231431 n^{5} + 5551605778704632640415813190051917504405978215 n^{4} + 962928492914669630579544115564080516569859761055 n^{3} + 83509033881169047417252322774912491312467703578025 n^{2} + 3621069810381628550125040617994705946213148016372634 n + 62805018920351497158712653091653748501280143448878640\right) a{\left(n + 87 \right)}}{29091692544 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(27019733839416731344438861355904894330582952 n^{5} + 3330495174125749436502315829191818666317589131 n^{4} + 163652210135363584880296514190100207765737337624 n^{3} + 4008132308364051961461028078740395247053646276941 n^{2} + 48940423291969615805881958108911017892865851397386 n + 238383290971867940167006875379603599614003661661506\right) a{\left(n + 21 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(29243935275658250197941387312329910291013942 n^{5} + 12537193525469077920041664638218641639498410355 n^{4} + 2149900423406620657655804687469398298430077297085 n^{3} + 184331632084908159729032548529089180764534029503395 n^{2} + 7902143126222326107537994879782650774330835006429013 n + 135501278010185599596816496591883958799716949899995970\right) a{\left(n + 86 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(47489013885641344275806667947288805692211346 n^{5} + 19890790287927570275068992724615872218402558199 n^{4} + 3332445056909046180463927735299665658919984668968 n^{3} + 279148939409695009732430689289874265097471591892327 n^{2} + 11691518668207867251244458749745205930151914458393930 n + 195865412827701162542992180169042524238453427489031806\right) a{\left(n + 84 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(65027936160073711849562945508235689921777467 n^{5} + 7839425137689487721456926129715861615326126745 n^{4} + 375757174638644843824491425987499948250793855865 n^{3} + 8957305358285923119381267004368825874288913998315 n^{2} + 106252858545922776915840887137965757083962972775568 n + 501986965380425370454701320391957220002412388470320\right) a{\left(n + 20 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(170361779769258549213534505470836241274644787 n^{5} + 72196568004639887852593373585692832006930714565 n^{4} + 12238094757041779575167989237556496165153633218215 n^{3} + 1037227271262653656860818688758783817415502361631815 n^{2} + 43953844369080799605258158703519299828537968141914058 n + 745027973713014305599793749646417759329890518054734200\right) a{\left(n + 85 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(474416552309968365598346231087349171172284921 n^{5} + 60295115747333931149177165045740499195668461600 n^{4} + 3058120158997118270513616091880016592819484802605 n^{3} + 77382593535218767222831069578861438931210427717310 n^{2} + 977011668421428156333770880701081763451741036311004 n + 4924486450711009864907515131938326913545055967570900\right) a{\left(n + 22 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(633805537523438575087907366552034120674130814 n^{5} + 262338348694390854918935587991227285082753400815 n^{4} + 43432876918515357599851137758246913502052085409570 n^{3} + 3595310439594620332267919019386458475763063914501545 n^{2} + 148804160591744087055366358488961491540655754076893356 n + 2463454314093560815820404126714040256836957400777034680\right) a{\left(n + 83 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(648349889574902023558058071110273620907528081 n^{5} + 265150236032719668308281015885617507669652608239 n^{4} + 43373494580578147958538268357519629369421034280541 n^{3} + 3547451792003039559129000562819257211434116756215477 n^{2} + 145066834348018275422146739678542593689438597811840122 n + 2372843752579179879617980435749099903573111540918417636\right) a{\left(n + 82 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(5580139085133771667077249007455890149558028839 n^{5} + 758843902681683627030488519529171734588992068085 n^{4} + 41216163347936078000746375381119386830645566700075 n^{3} + 1117703487876306423122932262176940687391999442369355 n^{2} + 15134020983309993773382414502179848022021069675706366 n + 81858542143950854200474223545633892459205618794250960\right) a{\left(n + 24 \right)}}{29091692544 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(5914376773836637976841370375841677108033574007 n^{5} + 777202131539473533615221605901062449922113831395 n^{4} + 40779371367435131796821813235405616477590309443795 n^{3} + 1068005815610377388773621447794222947890982382364765 n^{2} + 13962590007174676225756753374789514327723851397783198 n + 72901783112033103773865907321315641724500875571387480\right) a{\left(n + 23 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(15892889204431563176545785084921762229722930863 n^{5} + 6420807770297992853553668705380747541626356003895 n^{4} + 1037587602439802161048169150263065973307044409468755 n^{3} + 83833575980988413007880088066100430513799722990217465 n^{2} + 3386640655078176809309937579866609116932171029267787822 n + 54722751545999006673364525013176641903540466053724872960\right) a{\left(n + 81 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(16844753265173849687361591344826979419527764727 n^{5} + 6637904958321698065861436845130406565538327025827 n^{4} + 1046264774500981530264004552295415124432227769206223 n^{3} + 82452921371339679947173960694760244513945049632798693 n^{2} + 3248807706451677979379092371404507296842511054375505106 n + 51201784690831010219226388561136126580567048852464952288\right) a{\left(n + 79 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(18218548162376342928954064713269885390097049003 n^{5} + 7088418115952792358549938782887045891695446951067 n^{4} + 1103129212664336050289147650987255152181959331804217 n^{3} + 85833044033416849675702010366986152427481581170308797 n^{2} + 3339129466459713618062899918541287214261608843214871684 n + 51957964346314388550440334856150673083759081676908349328\right) a{\left(n + 78 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(21793002881293347690430595098232333805161677411 n^{5} + 3067252695285384118200689441275925735581497109285 n^{4} + 172448159851989182651432588355031698417997444851935 n^{3} + 4841469487556619900681730165628772272282236647848795 n^{2} + 67877713494101076159605588300885461817224943753035254 n + 380206023911814796632591360211977300300636892162492920\right) a{\left(n + 25 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(37356438594782805299079740768768239894315920789 n^{5} + 14906689047519858883776599901552347419978884483195 n^{4} + 2379267970993019586879288831347401924902214603599545 n^{3} + 189872345871002616287729662730783808293196216903951525 n^{2} + 7575930713209080005046828870369176458160989727623577506 n + 120908239190138437468682885029819402717754678248891637520\right) a{\left(n + 80 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(52605036303091182612154426937928526646954919303 n^{5} + 7660936403828236544831623268668833654580156755895 n^{4} + 445702804432932731920484248106361072061053270659135 n^{3} + 12949437127834877284060468803451359716174765189283425 n^{2} + 187897041600065831048004954750639168812934931019124862 n + 1089337814601248961149449531339982136001657120150731420\right) a{\left(n + 26 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(59160318772068111413199386015130075399368803143 n^{5} + 8911424324709309311398308513034439893613394496620 n^{4} + 536263673783150973345811525501248490961937077325085 n^{3} + 16116077707460730020923519901830910493862106759691870 n^{2} + 241887389795761325149463115690442329772968738116892812 n + 1450612570300225472269664478800471850150697875459190170\right) a{\left(n + 27 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(97994820042341813830945469434216847893636359913 n^{5} + 15774683766378442693388074545606309563664042568913 n^{4} + 1014321069270289197578408582266961336150451526177787 n^{3} + 32568095472703308087973547524597644808423118058985051 n^{2} + 522207404741022087166717499593168004560312193197175388 n + 3345385329308170647370134043159872899387475112101098244\right) a{\left(n + 29 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(102882911849992942609103569509589950912088015269 n^{5} + 362603580241717523519706448590427126000897657786715 n^{4} + 57551615313421096359323266491406941988248197084172215 n^{3} + 3492272260399932787018974350844012889056680091214283125 n^{2} + 94644248898747871723220826488459709368151738658544221156 n + 963707716687914282651586714660017511365279760314112926120\right) a{\left(n + 39 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(248788149943290496665130383113332267715993359783 n^{5} + 38747136781703369175930620817226428191227430274435 n^{4} + 2410720705750961693341899532687306207420036414549815 n^{3} + 74901497988943304723414973376564962239506820588733045 n^{2} + 1162242997609446745080291375494383228292499888964724822 n + 7205771502731384644089314128886083806902450355125208300\right) a{\left(n + 28 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(312968992268888867007270980919184314484295531009 n^{5} + 53796200403580968570225880664301023201560572527471 n^{4} + 3692267394976285194437886283873239345868562134282943 n^{3} + 126500427289745330938490897895057420567118848051848281 n^{2} + 2163704379768311067065069479513238556366277010115668012 n + 14782412588109043432114688289483950438540074665232838076\right) a{\left(n + 31 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(376612698875580270005667665189981730500205590287 n^{5} + 142761172128174713319683777260985497743153697759115 n^{4} + 21645099456023186106975176072647340011200386578101105 n^{3} + 1640788884634933393134207395528550288946779905100032365 n^{2} + 62185442108728154393113054749064743385282786654731095288 n + 942663884955130281299130702987518974860194199515064551760\right) a{\left(n + 76 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(378154219770081929670843179793261863404677771083 n^{5} + 145240832419872851784739598718475000645900600158555 n^{4} + 22312424015817798734153389969312730109300892623834595 n^{3} + 1713769775886451826262396867085532474697071330040866325 n^{2} + 65812035252934682844818746086859795892674954858128089442 n + 1010868499765043821932703063792902041177493093018500609520\right) a{\left(n + 77 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(464286332629246333205492418987342340817070608213 n^{5} + 168969208280887738932222950060878881973994904026873 n^{4} + 24594965550462686260656638062030768156081538491653963 n^{3} + 1789824459017972371090400895476035551359600377225353367 n^{2} + 65117654035708894521085787258530752834755965235322595336 n + 947544423080139867724876090681932216312219275028549912648\right) a{\left(n + 73 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(659985255636772391014102437206371450650578651409 n^{5} + 243531764667955690469534131686656834684170087588860 n^{4} + 35941890207096666033925776059613375412162491673554245 n^{3} + 2652033532939182613397480196680541636525879360235940790 n^{2} + 97833757729811513286228003786875798701040504396651612596 n + 1443506845102339972261527561085675712396339723202334912200\right) a{\left(n + 74 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(719828907487279034740872711160651443303588024709 n^{5} + 269244353286723287400775939831908643106903472346655 n^{4} + 40280378598502518503167767349231565601630193474594895 n^{3} + 3012861872659903319153449489679927233298616381342173305 n^{2} + 112668550098438849685139822250341444138100143340622797816 n + 1685206066645595724553287793516061891941557512350716862740\right) a{\left(n + 75 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(904559182334698451341889877958189605630994533459 n^{5} + 150469034852983163410537308982089245539736943038785 n^{4} + 9996508030679289083571755096249347882899045837886425 n^{3} + 331584350489331317300032839590543802145289297663641415 n^{2} + 5491908345929618599983158224518117427931177252548170696 n + 36338016158703337561051832209672229687460311479041000540\right) a{\left(n + 30 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(2035509733571356405378728746609761076802938927077 n^{5} + 390716808070740751389609846061575467793627315313870 n^{4} + 29556946520916023478892807068065706822993371479873079 n^{3} + 1096744373214827870546933324470604099466452966345161916 n^{2} + 19831347662097843566530744756910648164932671152227997416 n + 138305935524405361411081934069046379052958256022650873506\right) a{\left(n + 41 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(2302750188607479216278397398712678838459764486875 n^{5} + 474580888551350800523961892303621842272121124618335 n^{4} + 38909850892547644558911097019872645199069470068556261 n^{3} + 1585117197868380907797807793463782452558288331342595845 n^{2} + 32053855282294216599050982813208217022583980129103878536 n + 257065703326120959796935252669259110264794379451339946996\right) a{\left(n + 42 \right)}}{14545846272 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(2532426994736404529539027079312773575192154542131 n^{5} + 449928821340991075733394012768832655561526445943735 n^{4} + 31907614836691315535632427378709239194581880902585595 n^{3} + 1129207046250292765830275488282701953221737277871816905 n^{2} + 19945612731320089798928565311561965502337309791058444114 n + 140690187590119150088377111331706252995873252637482601600\right) a{\left(n + 32 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(2668344028707930807885710415692737066340446692024 n^{5} + 508037040866845222961638160484826932615303013236325 n^{4} + 38558358179722572994653799804578051257460752912723215 n^{3} + 1458745817113670764622681572799493120735850243416497105 n^{2} + 27517736300992010403257570153484999144567078630779042411 n + 207120096046582195909855270632178604822340598318269620340\right) a{\left(n + 34 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(3411378114858679636164737216365447695446450041669 n^{5} + 675037670216676021319939262302744212747072976254360 n^{4} + 53173121058137865647412333199679080705704765388588655 n^{3} + 2085421037958097013022112781595545473026761115557672100 n^{2} + 40742515795703981194870342973102203585249656205589466726 n + 317338953142037352882469489885622711972865098736684699690\right) a{\left(n + 35 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(3784569020898096633649377819707360159560711628701 n^{5} + 833991723006306718817140505239222836588850472017345 n^{4} + 72467926168771379886609022868605176824749983439440465 n^{3} + 3112698527338077184963470404830338633524131666942408805 n^{2} + 66228681961808757449336908581621224257869405482114193764 n + 559298071405157296339753446806720767330959442001638215060\right) a{\left(n + 37 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(3820163587344860206470789803656021893070274713949 n^{5} + 702052867013891198766592523071893474608785610676855 n^{4} + 51472932507789808617187168750351319818782922691278365 n^{3} + 1882455588130223512293197014332835422330606294901967205 n^{2} + 34347762357573519198002565002323658900097164866877029186 n + 250189628962294812870090075016714361839771579483294347360\right) a{\left(n + 33 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(5277344403182139961225866898154229692403416639497 n^{5} + 1318806327715173110421091611453538831833492750360135 n^{4} + 126390681174013844783862413217895910002878971082675835 n^{3} + 5883756075263317119407264236193949040385231846641869105 n^{2} + 134089737626056689855057286428059442236217037929010029868 n + 1202839102077315669126594734538052369871010699893802009240\right) a{\left(n + 38 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(5359439621629683404055846088909894468833904542449 n^{5} - 296553640571609099428306831274781201010055006886425 n^{4} - 187758620191066368403421661074290540962447932658183715 n^{3} - 17019528042958463506311431880061272745926604481227339075 n^{2} - 609520602894961738054924593886776424932432409620873904534 n - 7868752478561321221804208601027211490762501118576290781900\right) a{\left(n + 49 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(5428748977408287219593420655712892359151721142609 n^{5} + 1807350129102626289144765147548881692641720430300181 n^{4} + 240604322730805639680760407592637742222896120784128979 n^{3} + 16009820357674186918048475505347518411072680434112440639 n^{2} + 532456656004819214369022490554324899797575009780769368836 n + 7080749377199543663762899458749186112675619145451263144652\right) a{\left(n + 67 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(7800719680374841564702202748865119017214031085061 n^{5} + 1615155821313747836563599037661510834168383223320285 n^{4} + 132762417352163643298980490282849544773885555090537295 n^{3} + 5421615188021099448701039738867386819798706665135658915 n^{2} + 110095466771574286710629599609586022456888496291901856364 n + 890026510751446089275058635210842461722687105644055937600\right) a{\left(n + 36 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(7827242876306493974557796204077376390007966490319 n^{5} + 2808797066447126442359104396842523051311707025978185 n^{4} + 403125625456580512005840910135988891831212668355562455 n^{3} + 28925252119511231634339829289603718905285474164448044135 n^{2} + 1037597041580853589230017482653184348743409280282357309706 n + 14886175774861335831562680603058172337782474366964589995840\right) a{\left(n + 72 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(8120121192646109379842836291265667062043747797591 n^{5} + 2467538318138816628813151246372948125259712279379493 n^{4} + 299427929983569482657683574775089552777841701586900405 n^{3} + 18133941871968989914370842669177347682637893871046487235 n^{2} + 548010705403698154499521140791602488228513831753220784416 n + 6609784878982319273499601750495340013341033785475835917748\right) a{\left(n + 62 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(8474933173756819057537463881248707812253724984503 n^{5} + 1364050272409898553745250247945312412093966889492335 n^{4} + 79776695210865195620869139374956810058863131499841435 n^{3} + 1894315332504641071888493680057198760020607687783483345 n^{2} + 9325395083250451900473659695878302073989712399624688722 n - 176319701474594657357195808596522482927135278297623665980\right) a{\left(n + 40 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(8623690160072616853513031621968699301777448852809 n^{5} + 2307176458108723815313478587843766458470727906838225 n^{4} + 240499712635772926494953310856435989500261646882817225 n^{3} + 12075611875038079175199800280126099362057142768984987175 n^{2} + 286255332415956558101655186357006901972960550099652818586 n + 2455827212447625650073256282127633515497526505913835380900\right) a{\left(n + 60 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{5 \left(9806020388109988360676024351594418894914216166177 n^{5} + 2121274222831593712476060536459144502421157957517919 n^{4} + 183006311737435954278956953260739699725466891198995269 n^{3} + 7869006909148013794867285747179408580567308910283221205 n^{2} + 168596682368994052607699504967394703709873013128781863862 n + 1439498755464090062368484624887965154401629454793618472064\right) a{\left(n + 43 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{5 \left(12192573739243936576203993171980512883155213300405 n^{5} + 2747724461244921489875535184087944565893299348746353 n^{4} + 247116339823438527188319476032396374922185252277166729 n^{3} + 11086149053763609768099702157668802916509468003593612039 n^{2} + 248081096597515580463800194395142104940162647520624307058 n + 2215159156381748574602530776492250034751106914617002304424\right) a{\left(n + 44 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(12639615984902770534096517705746409901409316300979 n^{5} + 4471126721348521841825300054987421171372220167480895 n^{4} + 632554695156914198879266081276176394988961675564386815 n^{3} + 44738860582640500182211849520330996380610043644320942145 n^{2} + 1581885661217073256040040056165798875845645817593347926046 n + 22369489370283046269574373127300286436454911962182553518000\right) a{\left(n + 71 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(17828912864397747547647190154973765007859844733963 n^{5} + 5501303072971110728121517299931872192001527789843465 n^{4} + 680755882368996751183029777961795740127623138607237095 n^{3} + 42217806594600323552059371645936923831383762415426919915 n^{2} + 1311786493989313321482783532380041413246741364299165202822 n + 16333231274824463919016481515980916525559821582575478557660\right) a{\left(n + 59 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(19529733957713792171425276451153593052569870824757 n^{5} + 6808052448166661315592498724795540731178376260025955 n^{4} + 949148941294805736245278348855337166585348710502931485 n^{3} + 66151216058196330926221688621712466746899503499527778205 n^{2} + 2304783873711115390286295046160379805543647625364477546798 n + 32114283794355097124676713524857921483396082395622554150240\right) a{\left(n + 70 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(20288442356597430037166695867977180471358466260761 n^{5} + 6861586199776868317884103677096205600712411025277475 n^{4} + 927998427539778406207475758347682129609149163597973225 n^{3} + 62736728669770036652358728751773394347419636992979973845 n^{2} + 2120035437485457599336612668235550432758147159090998465594 n + 28648070652441518172171217436549412484540302972843145076340\right) a{\left(n + 68 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(21288949347086499399074881708053063297025017042944 n^{5} + 4504738745779859942995613267721467327594664461984675 n^{4} + 368249530459344711910454638290443988946937278367252315 n^{3} + 14279169458691856046899922402309678294371322813671015555 n^{2} + 253137470244127420061866774499705240645765256915526240301 n + 1488321696698048342900030168240593151847076397711940572730\right) a{\left(n + 50 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(25581918410724177754579704084652207574969531593384 n^{5} + 6632444661797992336183760154399386204769261932301825 n^{4} + 681822215195051407922491884416683951116682431266633335 n^{3} + 34787740993675655814383132029576189403788076236942589655 n^{2} + 881851124908152114221133807053379826201610827202299952821 n + 8892580178658644477499265018055739627799248611095468403400\right) a{\left(n + 47 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(27218375158849597227607147868185772494850326994297 n^{5} + 8004559662154519137795003019153728408133088404693025 n^{4} + 910400657500364860070213362989890350202376515108780585 n^{3} + 50539753375283608715685889136835865490831973367754021695 n^{2} + 1377649327631595754189582207113901973952762807126551672498 n + 14810419989163271843140210763154117017323615510830990248340\right) a{\left(n + 48 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(28367575343415112686653752224488678911752512553953 n^{5} + 8374749231214864230425676001447628415648249105477745 n^{4} + 985516312059126091680719207669649373547676473079051035 n^{3} + 57758394881224781603200901055213171465589621609859115515 n^{2} + 1684971192091573262898922826321383386121140659099731317932 n + 19561434221914672829339432108854901961458847603364553672460\right) a{\left(n + 61 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(28830179310391347164084375737932289340765167391533 n^{5} + 9900951420018394543543768867886704174023303170422185 n^{4} + 1359799353281340443120962908190274919351481912936801045 n^{3} + 93357079663643224149150668860774593248217779173802018175 n^{2} + 3203983031505803149603369702220953141414619236082037758062 n + 43973338806397124303285795927942185601487734879134445256840\right) a{\left(n + 69 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(33540334156799091055503749171900727059184376021619 n^{5} + 7862282816246621521601415150231356431346502636623705 n^{4} + 735282173417616186827382757328839237854098840645317380 n^{3} + 34296050238983332449959353622879909718176985065048387365 n^{2} + 797920473978973193281402412387546582081553544200012125971 n + 7408366861744188655446763129026397640679706169086890779460\right) a{\left(n + 45 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(34371243732381705090132069923302791710048406608551 n^{5} + 11258778245275087917283620726246905839099303744654345 n^{4} + 1474576423280974602722998522651590203709522363297612345 n^{3} + 96521502296200295218568700289370524351900727921294244035 n^{2} + 3157560851639494143951158289647131221492109031787587769524 n + 41298058446982874642224318819297957594847218631816758953000\right) a{\left(n + 66 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(39585985377549869224749979328091544833872139710086 n^{5} + 9321556804238069262474625686609440685783297066859535 n^{4} + 871655563303798402916838351807161844591460536028759920 n^{3} + 40404069876304457627638983135431834413606779120064514905 n^{2} + 926708575508173117976507038941883371931454305238938525274 n + 8393093800656450755723676457740547636039199933058786940140\right) a{\left(n + 51 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(40187386433583139229018957302936994280223202518186 n^{5} + 11450963026500970518805598754258212384595358258600535 n^{4} + 1306697146413409304516419597296545594222181691004888760 n^{3} + 74648475610341692650784212340474292291019680820249766875 n^{2} + 2135015495128680819122315856559994347895662019089817078624 n + 24458206175623442856898686960008629358408068259981717109120\right) a{\left(n + 57 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(45799777551282884416265576201496085918697281604993 n^{5} + 14220582001984979327765867102125976689708416651990095 n^{4} + 1764305973230142887503754735021772395858864324880021895 n^{3} + 109322522667081454422586232252111569267093198350155122585 n^{2} + 3382888116425324369747167155117061738489934987993899410252 n + 41817372473040264398775093970717822585198078727353582749540\right) a{\left(n + 63 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(48708745872892852302971958038989555764327435233143 n^{5} + 14275223302697759054550174281501329257279112778371875 n^{4} + 1676500198861104536200464321078652296173377011172912145 n^{3} + 98624533451078771116263236826344385983772418637287244145 n^{2} + 2906221618717169790544036451948970992592933810164925383172 n + 34318040760462297140150659735515832007034000030461076658920\right) a{\left(n + 58 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(64429936003515310059889691899295214605120780732229 n^{5} + 15767490044757586496617109389586027485350138128884055 n^{4} + 1537190171377064563799896337841258687365372595357658055 n^{3} + 74655058516959486077936261160880767731661879295478640145 n^{2} + 1806739523852937265056551077907296645425041286864590861476 n + 17435791173373603716144979072574999851703094716965754796120\right) a{\left(n + 46 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(67805381221333275644274441411142625564477854529263 n^{5} + 17910890873991047058008297044219825984669483207772205 n^{4} + 1892315083427756365813337099587991690345504196731460490 n^{3} + 99958371148445534958771841716591978292618561331845134555 n^{2} + 2640052240694892292151070573736747985009238337236699921817 n + 27892265633515418135283780011765894947987351774433453850570\right) a{\left(n + 54 \right)}}{21818769408 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(81843063775406483227080830728762891786525496629809 n^{5} + 26361117310186321774561492178904499302963524853256705 n^{4} + 3394460765091276162880361639535023775270019569527537465 n^{3} + 218423610661539325616961827527174361295708489993320409335 n^{2} + 7023213763966736274470022533259520379240715831720384897766 n + 90272245790368357782253983205842935310665437227698343150600\right) a{\left(n + 65 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(90637392500468324024064358891192558250900603633791 n^{5} + 28682039200559182480882845477298833385576366879560565 n^{4} + 3627892242966787916745032385025611107622648745943204755 n^{3} + 229261113843414825849853896317394694454416490072110342715 n^{2} + 7237959991092966930604897783928085509945717792147464805254 n + 91322491486207066150633497164074035255679586896582070429160\right) a{\left(n + 64 \right)}}{87275077632 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(108315693611271467301901318373087314254440563660051 n^{5} + 30106046887762632372606186659962838762684490813185335 n^{4} + 3349784548476714750004537187995125126756195659458885935 n^{3} + 186516118731940980162192312918382594660606530915236057945 n^{2} + 5197302935558617574709731172388641299649869956507063329014 n + 57985278890244369178263495065273423993580063199091332210440\right) a{\left(n + 56 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} + \frac{\left(109637619257458912146645805905209558282600923543961 n^{5} + 27149861871317174714446471751166826505950831138656645 n^{4} + 2682543193407207928419238834204916524301666646282666335 n^{3} + 132160939997755354681264427209462776351351525404465474595 n^{2} + 3245762419981133037280467644729706108057044765853635489924 n + 31778799810454411023013844257416162832022047443499600713300\right) a{\left(n + 52 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(127955123470495994062556212662391440672493132040959 n^{5} + 34695296681788771922506253864997086610305441204994145 n^{4} + 3764582141589938417881657292412279487421328702609822405 n^{3} + 204329124798416840161122804549794345281766324057211509735 n^{2} + 5548001198370507421623243534025651913916002124172747541696 n + 60290985087933747074392116455892889386462544171633992474180\right) a{\left(n + 55 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)} - \frac{\left(129370322685389559872198051760305247062448538214239 n^{5} + 33189942024435486807465670210921929333692109357385115 n^{4} + 3402988294990232006167026560228695126299989410045995235 n^{3} + 174299833264594883748013366531840494342329016040842797905 n^{2} + 4459711095368645268871193324928038044802362530544996848406 n + 45600625901215499516508144601664968077591881548114163316300\right) a{\left(n + 53 \right)}}{43637538816 \left(n + 117\right) \left(n + 118\right) \left(n + 119\right) \left(n + 120\right) \left(n + 121\right)}, \quad n \geq 120\)
This specification was found using the strategy pack "Point Placements Req Corrob" and has 384 rules.
Finding the specification took 31861 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 384 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{370}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{267}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{265}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{24}\! \left(x \right) &= \frac{F_{25}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{25}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{32}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{33}\! \left(x \right) &= \frac{F_{34}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{34}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{19}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= \frac{F_{39}\! \left(x \right)}{F_{0}\! \left(x \right) F_{4}\! \left(x \right)}\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{42}\! \left(x \right) &= \frac{F_{43}\! \left(x \right)}{F_{4}\! \left(x \right) F_{47}\! \left(x \right)}\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{0} \left(x \right)^{2} F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= \frac{F_{58}\! \left(x \right)}{F_{4}\! \left(x \right) F_{71}\! \left(x \right)}\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= -F_{264}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= \frac{F_{61}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{209}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{2}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{0}\! \left(x \right) F_{101}\! \left(x \right) F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{86}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{85}\! \left(x \right) &= 0\\
F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{92}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{96}\! \left(x \right) &= 2 F_{85}\! \left(x \right)+F_{97}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= -F_{119}\! \left(x \right)+F_{104}\! \left(x \right)\\
F_{104}\! \left(x \right) &= \frac{F_{105}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\
F_{106}\! \left(x \right) &= -F_{110}\! \left(x \right)+F_{107}\! \left(x \right)\\
F_{107}\! \left(x \right) &= \frac{F_{108}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{109}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{112}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{2}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{118}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{106}\! \left(x \right) F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= \frac{F_{117}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{117}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{123}\! \left(x \right)\\
F_{120}\! \left(x \right) &= \frac{F_{121}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)\\
F_{122}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{0}\! \left(x \right) F_{126}\! \left(x \right)\\
F_{126}\! \left(x \right) &= -F_{151}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= \frac{F_{128}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)\\
F_{129}\! \left(x \right) &= -F_{143}\! \left(x \right)+F_{130}\! \left(x \right)\\
F_{130}\! \left(x \right) &= -F_{133}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{131}\! \left(x \right) &= \frac{F_{132}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{132}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{148}\! \left(x \right)\\
F_{134}\! \left(x \right) &= -F_{142}\! \left(x \right)+F_{135}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{137}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{0} \left(x \right)^{2}\\
F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{0}\! \left(x \right) F_{139}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{140}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{143}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{0}\! \left(x \right) F_{145}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{0}\! \left(x \right) F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)+F_{205}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{176}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{161}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{160}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{175}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{174}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)+F_{167}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{170}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{163}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{184}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{183}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)+F_{182}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{181}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{179}\! \left(x \right)\\
F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)+F_{204}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{189}\! \left(x \right)+F_{203}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{188}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{186}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{190}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{191}\! \left(x \right)+F_{192}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{186}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{198}\! \left(x \right)\\
F_{193}\! \left(x \right) &= 2 F_{85}\! \left(x \right)+F_{194}\! \left(x \right)+F_{196}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{195}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{193}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{197}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{197}\! \left(x \right) &= F_{179}\! \left(x \right)+F_{193}\! \left(x \right)\\
F_{198}\! \left(x \right) &= 3 F_{85}\! \left(x \right)+F_{199}\! \left(x \right)+F_{201}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{200}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{171}\! \left(x \right)+F_{198}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{202}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{198}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{186}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{181}\! \left(x \right) F_{206}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{208}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{162}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{185}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{211}\! \left(x \right) F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{211}\! \left(x \right) &= -F_{262}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{212}\! \left(x \right) &= -F_{215}\! \left(x \right)+F_{213}\! \left(x \right)\\
F_{213}\! \left(x \right) &= \frac{F_{214}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{214}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{218}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{220}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{221}\! \left(x \right)+F_{222}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{122}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{0}\! \left(x \right) F_{223}\! \left(x \right)\\
F_{223}\! \left(x \right) &= -F_{227}\! \left(x \right)+F_{224}\! \left(x \right)\\
F_{224}\! \left(x \right) &= \frac{F_{225}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{225}\! \left(x \right) &= F_{226}\! \left(x \right)\\
F_{226}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{122}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{229}\! \left(x \right)\\
F_{228}\! \left(x \right) &= F_{2}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{230}\! \left(x \right) &= F_{231}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)+F_{237}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{19}\! \left(x \right) F_{234}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{236}\! \left(x \right) F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{19}\! \left(x \right) F_{238}\! \left(x \right)\\
F_{238}\! \left(x \right) &= -F_{261}\! \left(x \right)+F_{239}\! \left(x \right)\\
F_{239}\! \left(x \right) &= \frac{F_{240}\! \left(x \right)}{F_{79}\! \left(x \right)}\\
F_{240}\! \left(x \right) &= -F_{259}\! \left(x \right)+F_{241}\! \left(x \right)\\
F_{241}\! \left(x \right) &= \frac{F_{242}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{242}\! \left(x \right) &= F_{243}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{244}\! \left(x \right) F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{244}\! \left(x \right) &= \frac{F_{245}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)+F_{253}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{248}\! \left(x \right)\\
F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)\\
F_{249}\! \left(x \right) &= F_{250}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{250}\! \left(x \right) &= F_{251}\! \left(x \right)+F_{252}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{24}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{36}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)\\
F_{254}\! \left(x \right) &= F_{255}\! \left(x \right) F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{255}\! \left(x \right) &= F_{238}\! \left(x \right)+F_{256}\! \left(x \right)\\
F_{256}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{257}\! \left(x \right)\\
F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{255}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)\\
F_{260}\! \left(x \right) &= F_{79} \left(x \right)^{2} F_{255}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{261}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{234}\! \left(x \right)\\
F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)\\
F_{263}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{116}\! \left(x \right) F_{212}\! \left(x \right)\\
F_{265}\! \left(x \right) &= F_{266}\! \left(x \right)\\
F_{266}\! \left(x \right) &= F_{19}\! \left(x \right) F_{256}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{267}\! \left(x \right) &= F_{268}\! \left(x \right)+F_{269}\! \left(x \right)\\
F_{268}\! \left(x \right) &= F_{2}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{269}\! \left(x \right) &= F_{270}\! \left(x \right)\\
F_{270}\! \left(x \right) &= F_{271}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{271}\! \left(x \right) &= F_{272}\! \left(x \right)+F_{345}\! \left(x \right)\\
F_{272}\! \left(x \right) &= F_{2}\! \left(x \right) F_{273}\! \left(x \right)\\
F_{273}\! \left(x \right) &= \frac{F_{274}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)\\
F_{275}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{276}\! \left(x \right)\\
F_{276}\! \left(x \right) &= F_{277}\! \left(x \right)\\
F_{277}\! \left(x \right) &= F_{278}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{278}\! \left(x \right) &= \frac{F_{279}\! \left(x \right)}{F_{72}\! \left(x \right)}\\
F_{279}\! \left(x \right) &= -F_{337}\! \left(x \right)+F_{280}\! \left(x \right)\\
F_{280}\! \left(x \right) &= \frac{F_{281}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{281}\! \left(x \right) &= F_{282}\! \left(x \right)\\
F_{282}\! \left(x \right) &= -F_{344}\! \left(x \right)+F_{283}\! \left(x \right)\\
F_{283}\! \left(x \right) &= -F_{313}\! \left(x \right)+F_{284}\! \left(x \right)\\
F_{284}\! \left(x \right) &= \frac{F_{285}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)\\
F_{286}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{287}\! \left(x \right)\\
F_{287}\! \left(x \right) &= -F_{288}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{288}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{289}\! \left(x \right)\\
F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)\\
F_{290}\! \left(x \right) &= F_{291}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{293}\! \left(x \right)+F_{300}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{294}\! \left(x \right)\\
F_{294}\! \left(x \right) &= F_{295}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{295}\! \left(x \right) &= F_{296}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{296}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)+F_{299}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{298}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{296}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{301}\! \left(x \right)+F_{306}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{301}\! \left(x \right) &= F_{302}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{302}\! \left(x \right) &= F_{303}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{303}\! \left(x \right) &= F_{304}\! \left(x \right)+F_{310}\! \left(x \right)\\
F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{306}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{306}\! \left(x \right) &= F_{307}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{307}\! \left(x \right) &= F_{308}\! \left(x \right)+F_{309}\! \left(x \right)\\
F_{308}\! \left(x \right) &= F_{304}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{309}\! \left(x \right) &= F_{297}\! \left(x \right)+F_{310}\! \left(x \right)\\
F_{310}\! \left(x \right) &= 2 F_{85}\! \left(x \right)+F_{311}\! \left(x \right)+F_{312}\! \left(x \right)\\
F_{311}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{312}\! \left(x \right) &= F_{303}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{313}\! \left(x \right) &= -F_{314}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{314}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{315}\! \left(x \right)\\
F_{315}\! \left(x \right) &= F_{316}\! \left(x \right)+F_{331}\! \left(x \right)\\
F_{316}\! \left(x \right) &= F_{317}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{323}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{318}\! \left(x \right) &= F_{319}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{319}\! \left(x \right) &= F_{320}\! \left(x \right)+F_{321}\! \left(x \right)\\
F_{320}\! \left(x \right) &= F_{317}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{321}\! \left(x \right) &= F_{322}\! \left(x \right)+F_{326}\! \left(x \right)\\
F_{322}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{323}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{323}\! \left(x \right) &= F_{324}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{324}\! \left(x \right) &= F_{325}\! \left(x \right)\\
F_{325}\! \left(x \right) &= F_{322}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{326}\! \left(x \right) &= F_{327}\! \left(x \right)+F_{328}\! \left(x \right)+F_{330}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{327}\! \left(x \right) &= F_{317}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{328}\! \left(x \right) &= F_{329}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{329}\! \left(x \right) &= F_{321}\! \left(x \right)\\
F_{330}\! \left(x \right) &= 0\\
F_{331}\! \left(x \right) &= F_{332}\! \left(x \right)+F_{333}\! \left(x \right)\\
F_{332}\! \left(x \right) &= F_{2}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{333}\! \left(x \right) &= F_{334}\! \left(x \right)\\
F_{334}\! \left(x \right) &= F_{335}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{335}\! \left(x \right) &= F_{336}\! \left(x \right)+F_{337}\! \left(x \right)\\
F_{336}\! \left(x \right) &= F_{278}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{337}\! \left(x \right) &= F_{338}\! \left(x \right)+F_{340}\! \left(x \right)\\
F_{338}\! \left(x \right) &= F_{339}\! \left(x \right)\\
F_{339}\! \left(x \right) &= F_{331}\! \left(x \right)\\
F_{340}\! \left(x \right) &= F_{341}\! \left(x \right)\\
F_{341}\! \left(x \right) &= F_{342}\! \left(x \right) F_{4}\! \left(x \right) F_{72}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{342}\! \left(x \right) &= -F_{343}\! \left(x \right)+F_{278}\! \left(x \right)\\
F_{343}\! \left(x \right) &= \frac{F_{339}\! \left(x \right)}{F_{4}\! \left(x \right) F_{72}\! \left(x \right) F_{79}\! \left(x \right)}\\
F_{344}\! \left(x \right) &= F_{2}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{345}\! \left(x \right) &= F_{257}\! \left(x \right) F_{346}\! \left(x \right)\\
F_{346}\! \left(x \right) &= \frac{F_{347}\! \left(x \right)}{F_{4}\! \left(x \right) F_{47}\! \left(x \right)}\\
F_{347}\! \left(x \right) &= F_{348}\! \left(x \right)\\
F_{348}\! \left(x \right) &= -F_{365}\! \left(x \right)+F_{349}\! \left(x \right)\\
F_{349}\! \left(x \right) &= F_{350}\! \left(x \right)\\
F_{350}\! \left(x \right) &= F_{351}\! \left(x \right) F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{351}\! \left(x \right) &= \frac{F_{352}\! \left(x \right)}{F_{4}\! \left(x \right) F_{47}\! \left(x \right)}\\
F_{352}\! \left(x \right) &= F_{353}\! \left(x \right)\\
F_{353}\! \left(x \right) &= F_{354}\! \left(x \right)\\
F_{354}\! \left(x \right) &= F_{355}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)+F_{360}\! \left(x \right)\\
F_{356}\! \left(x \right) &= F_{357}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{357}\! \left(x \right) &= F_{353}\! \left(x \right)+F_{358}\! \left(x \right)\\
F_{358}\! \left(x \right) &= F_{342}\! \left(x \right)+F_{359}\! \left(x \right)\\
F_{359}\! \left(x \right) &= F_{343}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{360}\! \left(x \right) &= \frac{F_{361}\! \left(x \right)}{F_{4}\! \left(x \right)}\\
F_{361}\! \left(x \right) &= F_{362}\! \left(x \right)\\
F_{362}\! \left(x \right) &= F_{363}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{363}\! \left(x \right) &= F_{364}\! \left(x \right)\\
F_{364}\! \left(x \right) &= F_{47} \left(x \right)^{2} F_{351}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{365}\! \left(x \right) &= F_{366}\! \left(x \right)\\
F_{366}\! \left(x \right) &= F_{367}\! \left(x \right) F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{367}\! \left(x \right) &= F_{368}\! \left(x \right)+F_{369}\! \left(x \right)\\
F_{368}\! \left(x \right) &= -F_{9}\! \left(x \right)+F_{358}\! \left(x \right)\\
F_{369}\! \left(x \right) &= -F_{357}\! \left(x \right)+F_{351}\! \left(x \right)\\
F_{370}\! \left(x \right) &= F_{371}\! \left(x \right)\\
F_{371}\! \left(x \right) &= F_{372}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{372}\! \left(x \right) &= F_{373}\! \left(x \right)+F_{376}\! \left(x \right)\\
F_{373}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{374}\! \left(x \right)\\
F_{374}\! \left(x \right) &= F_{375}\! \left(x \right)\\
F_{375}\! \left(x \right) &= F_{47} \left(x \right)^{2} F_{351}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{376}\! \left(x \right) &= F_{377}\! \left(x \right)+F_{379}\! \left(x \right)\\
F_{377}\! \left(x \right) &= F_{378}\! \left(x \right)\\
F_{378}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{379}\! \left(x \right) &= F_{380}\! \left(x \right)\\
F_{380}\! \left(x \right) &= F_{381}\! \left(x \right) F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{381}\! \left(x \right) &= F_{360}\! \left(x \right)+F_{382}\! \left(x \right)\\
F_{382}\! \left(x \right) &= F_{383}\! \left(x \right)\\
F_{383}\! \left(x \right) &= F_{181}\! \left(x \right) F_{351}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Requirement Placements" and has 197 rules.
Finding the specification took 31076 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 197 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{17}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{0}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{16}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{17}\! \left(x \right) &= x\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{10}\! \left(x \right) F_{17}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= \frac{F_{21}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{17}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{30}\! \left(x \right) &= 0\\
F_{31}\! \left(x \right) &= F_{17}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{17}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{17}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{40}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{17}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{17}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{17}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{17}\! \left(x \right) F_{25}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{17}\! \left(x \right) F_{49}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{49}\! \left(x \right) &= -F_{52}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= \frac{F_{51}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{17}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{40}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{17}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{17}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= \frac{F_{62}\! \left(x \right)}{F_{0}\! \left(x \right) F_{17}\! \left(x \right)}\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= -F_{80}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= \frac{F_{65}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= -F_{67}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{17}\! \left(x \right) F_{25}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= -F_{52}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= \frac{F_{74}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{74}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{72}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{17}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{10}\! \left(x \right) F_{17}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{17}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{52}\! \left(x \right) F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{10}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{87}\! \left(x \right) &= -F_{91}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= -F_{98}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= \frac{F_{90}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= -F_{92}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{17}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{10}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{17}\! \left(x \right) F_{25}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{102}\! \left(x \right) &= -F_{115}\! \left(x \right)+F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= \frac{F_{104}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{112}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{110}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{10}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{10}\! \left(x \right) F_{17}\! \left(x \right) F_{20}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{17}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{25} \left(x \right)^{2} F_{10}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{142}\! \left(x \right)\\
F_{120}\! \left(x \right) &= -F_{139}\! \left(x \right)+F_{121}\! \left(x \right)\\
F_{121}\! \left(x \right) &= -F_{128}\! \left(x \right)+F_{122}\! \left(x \right)\\
F_{122}\! \left(x \right) &= \frac{F_{123}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\
F_{124}\! \left(x \right) &= \frac{F_{125}\! \left(x \right)}{F_{0}\! \left(x \right) F_{17}\! \left(x \right)}\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{0}\! \left(x \right) F_{127}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{127}\! \left(x \right) &= -F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{10}\! \left(x \right) F_{130}\! \left(x \right) F_{17}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{134}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{132}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{131}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{138}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{135}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{134}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{139}\! \left(x \right) &= -F_{140}\! \left(x \right)+F_{102}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{114}\! \left(x \right) F_{17}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{142}\! \left(x \right) &= -F_{190}\! \left(x \right)+F_{143}\! \left(x \right)\\
F_{143}\! \left(x \right) &= \frac{F_{144}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{146}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{186}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{170}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{114}\! \left(x \right) F_{151}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{151}\! \left(x \right) &= \frac{F_{152}\! \left(x \right)}{F_{10}\! \left(x \right) F_{17}\! \left(x \right)}\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)\\
F_{153}\! \left(x \right) &= -F_{159}\! \left(x \right)+F_{154}\! \left(x \right)\\
F_{154}\! \left(x \right) &= \frac{F_{155}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\
F_{156}\! \left(x \right) &= -F_{157}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{0} \left(x \right)^{2}\\
F_{159}\! \left(x \right) &= -F_{162}\! \left(x \right)+F_{160}\! \left(x \right)\\
F_{160}\! \left(x \right) &= \frac{F_{161}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{161}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{163}\! \left(x \right)\\
F_{163}\! \left(x \right) &= -F_{91}\! \left(x \right)+F_{164}\! \left(x \right)\\
F_{164}\! \left(x \right) &= -F_{167}\! \left(x \right)+F_{165}\! \left(x \right)\\
F_{165}\! \left(x \right) &= \frac{F_{166}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{166}\! \left(x \right) &= F_{91}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{10}\! \left(x \right) F_{169}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{170}\! \left(x \right) &= -F_{178}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{171}\! \left(x \right) &= -F_{176}\! \left(x \right)+F_{172}\! \left(x \right)\\
F_{172}\! \left(x \right) &= \frac{F_{173}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)\\
F_{174}\! \left(x \right) &= \frac{F_{175}\! \left(x \right)}{F_{0}\! \left(x \right) F_{17}\! \left(x \right)}\\
F_{175}\! \left(x \right) &= F_{126}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{10}\! \left(x \right) F_{130}\! \left(x \right) F_{17}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{178}\! \left(x \right) &= -F_{184}\! \left(x \right)+F_{179}\! \left(x \right)\\
F_{179}\! \left(x \right) &= -F_{182}\! \left(x \right)+F_{180}\! \left(x \right)\\
F_{180}\! \left(x \right) &= \frac{F_{181}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{181}\! \left(x \right) &= F_{105}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{10}\! \left(x \right) F_{17}\! \left(x \right) F_{23}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{184}\! \left(x \right) &= F_{185}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{114}\! \left(x \right) F_{17}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{17}\! \left(x \right) F_{188}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{10}\! \left(x \right) F_{130}\! \left(x \right) F_{17}\! \left(x \right) F_{23}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{191}\! \left(x \right)\\
F_{191}\! \left(x \right) &= -F_{140}\! \left(x \right)+F_{192}\! \left(x \right)\\
F_{192}\! \left(x \right) &= \frac{F_{193}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{17}\! \left(x \right) F_{195}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{196}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{184}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point And Row Placements Req Corrob" and has 263 rules.
Finding the specification took 28080 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 263 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{262}\! \left(x \right)+F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{6}\! \left(x \right) &= 0\\
F_{7}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{260}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{255}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{84}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{107}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{24}\! \left(x \right) &= \frac{F_{25}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{25}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{26}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{106}\! \left(x \right)+F_{28}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{29}\! \left(x \right) &= \frac{F_{30}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{30}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{33}\! \left(x \right)-F_{57}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= \frac{F_{7}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{32}\! \left(x \right) &= x\\
F_{33}\! \left(x \right) &= F_{32}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)+F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{32}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{32}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{32}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{42}\! \left(x \right) &= -F_{22}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{32}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{47}\! \left(x \right)+F_{56}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{32}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= -F_{29}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= \frac{F_{51}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{51}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{37}\! \left(x \right)-F_{52}\! \left(x \right)-F_{55}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{32}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{32}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{32}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{32}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{60}\! \left(x \right)+F_{61}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{32}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{32}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{39}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{32}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{35}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{32}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= \frac{F_{74}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{74}\! \left(x \right) &= -F_{24}\! \left(x \right)-F_{98}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{0}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{9}\! \left(x \right)+F_{95}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{0}\! \left(x \right) F_{32}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{32}\! \left(x \right) F_{83}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{84}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{32}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= \frac{F_{87}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{87}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{32}\! \left(x \right) F_{83}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{32}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{32}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{0}\! \left(x \right) F_{32}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{32}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{32}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{32}\! \left(x \right) F_{35}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{32}\! \left(x \right) F_{59}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{32}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{27}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{83}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{112}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{32}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{113}\! \left(x \right) &= \frac{F_{114}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{138}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{121}\! \left(x \right) &= -F_{132}\! \left(x \right)+F_{122}\! \left(x \right)\\
F_{122}\! \left(x \right) &= -F_{125}\! \left(x \right)+F_{123}\! \left(x \right)\\
F_{123}\! \left(x \right) &= \frac{F_{124}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{124}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{130}\! \left(x \right)+F_{131}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{32}\! \left(x \right) F_{59}\! \left(x \right) F_{83}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{104}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{136}\! \left(x \right)+F_{137}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{32}\! \left(x \right) F_{35}\! \left(x \right) F_{83}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{101}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{32}\! \left(x \right) F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{140}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{140}\! \left(x \right) &= \frac{F_{141}\! \left(x \right)}{F_{0}\! \left(x \right) F_{32}\! \left(x \right)}\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{251}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{143}\! \left(x \right) &= -F_{231}\! \left(x \right)-F_{6}\! \left(x \right)+F_{144}\! \left(x \right)\\
F_{144}\! \left(x \right) &= -F_{147}\! \left(x \right)+F_{145}\! \left(x \right)\\
F_{145}\! \left(x \right) &= \frac{F_{146}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{146}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{149}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{0}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{151}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{153}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{22}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{0}\! \left(x \right) F_{154}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{157}\! \left(x \right) &= -F_{161}\! \left(x \right)+F_{158}\! \left(x \right)\\
F_{158}\! \left(x \right) &= \frac{F_{159}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)\\
F_{160}\! \left(x \right) &= -F_{8}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{163}\! \left(x \right) F_{165}\! \left(x \right) F_{32}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{164}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{32}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{170}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{169}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{166}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{172}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{175}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{178}\! \left(x \right)+F_{221}\! \left(x \right)+F_{223}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{178}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{179}\! \left(x \right)-F_{215}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{182}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{183}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{183}\! \left(x \right) &= \frac{F_{184}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{184}\! \left(x \right) &= -F_{187}\! \left(x \right)-F_{199}\! \left(x \right)-F_{214}\! \left(x \right)-F_{8}\! \left(x \right)+F_{185}\! \left(x \right)\\
F_{185}\! \left(x \right) &= \frac{F_{186}\! \left(x \right)}{F_{32}\! \left(x \right)}\\
F_{186}\! \left(x \right) &= F_{154}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{188}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{193}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{190}\! \left(x \right)+F_{191}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{24}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{176}\! \left(x \right) F_{32}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)+F_{196}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{194}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{197}\! \left(x \right)\\
F_{197}\! \left(x \right) &= F_{198}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{198}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{103}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{200}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{206}\! \left(x \right)+F_{210}\! \left(x \right)+F_{211}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{204}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{48}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{207}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{208}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{209}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{45}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{207}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{176}\! \left(x \right) F_{32}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)\\
F_{213}\! \left(x \right) &= F_{32}\! \left(x \right) F_{38}\! \left(x \right) F_{8}\! \left(x \right) F_{83}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{214}\! \left(x \right) &= F_{176}\! \left(x \right) F_{32}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{217}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{220}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{39}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{38}\! \left(x \right) F_{39}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{176}\! \left(x \right) F_{32}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)\\
F_{224}\! \left(x \right) &= F_{32}\! \left(x \right) F_{38}\! \left(x \right) F_{39}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{226}\! \left(x \right)\\
F_{226}\! \left(x \right) &= F_{165}\! \left(x \right) F_{32}\! \left(x \right) F_{38}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)\\
F_{228}\! \left(x \right) &= F_{165}\! \left(x \right) F_{229}\! \left(x \right) F_{32}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{230}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{233}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{234}\! \left(x \right)+F_{240}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{239}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)+F_{237}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{0}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{238}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{0}\! \left(x \right) F_{140}\! \left(x \right) F_{32}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{239}\! \left(x \right) &= F_{0}\! \left(x \right) F_{160}\! \left(x \right)\\
F_{240}\! \left(x \right) &= 2 F_{6}\! \left(x \right)+F_{241}\! \left(x \right)+F_{243}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)\\
F_{242}\! \left(x \right) &= F_{235}\! \left(x \right) F_{32}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{245}\! \left(x \right) F_{32}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{245}\! \left(x \right) &= 2 F_{6}\! \left(x \right)+F_{246}\! \left(x \right)+F_{250}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{38} \left(x \right)^{2} F_{248}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{248}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{249}\! \left(x \right)\\
F_{249}\! \left(x \right) &= F_{0} \left(x \right)^{2}\\
F_{250}\! \left(x \right) &= F_{244}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{252}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{253}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{253}\! \left(x \right) &= F_{245}\! \left(x \right)+F_{254}\! \left(x \right)\\
F_{254}\! \left(x \right) &= F_{248}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{255}\! \left(x \right) &= F_{256}\! \left(x \right)+F_{259}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{256}\! \left(x \right) &= F_{257}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{229}\! \left(x \right) F_{32}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{32}\! \left(x \right) F_{38}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)\\
F_{261}\! \left(x \right) &= F_{218}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{262}\! \left(x \right) &= F_{154}\! \left(x \right) F_{32}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point And Col Placements Req Corrob" and has 265 rules.
Finding the specification took 30913 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 265 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{11}\! \left(x \right) &= x\\
F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{204}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= -F_{203}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{198}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{197}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{11}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{22}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{25}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= \frac{F_{24}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{24}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{11}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{11}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{31}\! \left(x \right) &= \frac{F_{32}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{32}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{36}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{11}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{11}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{11}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{11}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{54}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{53}\! \left(x \right) &= 0\\
F_{54}\! \left(x \right) &= F_{11}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{11}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{60}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{11}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{11}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{64}\! \left(x \right) &= 2 F_{53}\! \left(x \right)+F_{65}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{11}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{11}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{53}\! \left(x \right)+F_{72}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{11}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{80}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{11}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{11}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{11}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{11}\! \left(x \right) F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{92}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{11}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{11}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{96}\! \left(x \right)+F_{98}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{11}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{11}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{11}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{106}\! \left(x \right)\\
F_{101}\! \left(x \right) &= 2 F_{53}\! \left(x \right)+F_{102}\! \left(x \right)+F_{104}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{11}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{11}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{106}\! \left(x \right) &= 3 F_{53}\! \left(x \right)+F_{107}\! \left(x \right)+F_{109}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{11}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{11}\! \left(x \right) F_{110}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{11}\! \left(x \right) F_{112}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{195}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{114}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{11}\! \left(x \right) F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{193}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{11}\! \left(x \right) F_{120}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{122}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{113}\! \left(x \right) F_{123}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{126}\! \left(x \right)+F_{189}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{11}\! \left(x \right) F_{125}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{126}\! \left(x \right) &= -F_{186}\! \left(x \right)-F_{189}\! \left(x \right)-F_{53}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= -F_{134}\! \left(x \right)+F_{128}\! \left(x \right)\\
F_{128}\! \left(x \right) &= \frac{F_{129}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{132}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{11}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{11}\! \left(x \right) F_{133}\! \left(x \right)\\
F_{133}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{135}\! \left(x \right) &= -F_{146}\! \left(x \right)+F_{136}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{138}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{0} \left(x \right)^{2}\\
F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{140}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{145}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{11}\! \left(x \right) F_{142}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{11}\! \left(x \right) F_{113}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{147}\! \left(x \right)+F_{153}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{11}\! \left(x \right) F_{148}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{11}\! \left(x \right) F_{151}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{0}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{11}\! \left(x \right) F_{151}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{11}\! \left(x \right) F_{157}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{159}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{160}\! \left(x \right)+F_{162}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{11}\! \left(x \right) F_{157}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{11}\! \left(x \right) F_{164}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{166}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{180}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{178}\! \left(x \right)\\
F_{168}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{169}\! \left(x \right)\\
F_{169}\! \left(x \right) &= \frac{F_{170}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{170}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{174}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{172}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{11}\! \left(x \right) F_{125}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{11}\! \left(x \right) F_{175}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{177}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{179}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{11}\! \left(x \right) F_{182}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{185}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{11}\! \left(x \right) F_{184}\! \left(x \right)\\
F_{184}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{182}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{11}\! \left(x \right) F_{123}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{11}\! \left(x \right) F_{187}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{188}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{157}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{190}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{11}\! \left(x \right) F_{191}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{192}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{152}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{11}\! \left(x \right) F_{113}\! \left(x \right) F_{184}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{51}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{197}\! \left(x \right) &= F_{11}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{11}\! \left(x \right) F_{200}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{202}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{113}\! \left(x \right) F_{168}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{207}\! \left(x \right)+F_{211}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{206}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{11}\! \left(x \right) F_{204}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{11}\! \left(x \right) F_{209}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{11}\! \left(x \right) F_{113}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{212}\! \left(x \right)\\
F_{212}\! \left(x \right) &= F_{11}\! \left(x \right) F_{213}\! \left(x \right)\\
F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)+F_{256}\! \left(x \right)\\
F_{214}\! \left(x \right) &= F_{215}\! \left(x \right)+F_{217}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{11}\! \left(x \right) F_{113}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{11}\! \left(x \right) F_{218}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{253}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)+F_{221}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{11}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{11}\! \left(x \right) F_{223}\! \left(x \right)\\
F_{223}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{248}\! \left(x \right)\\
F_{224}\! \left(x \right) &= F_{225}\! \left(x \right)+F_{247}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{226}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{226}\! \left(x \right) &= F_{215}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)\\
F_{228}\! \left(x \right) &= F_{11}\! \left(x \right) F_{229}\! \left(x \right)\\
F_{229}\! \left(x \right) &= -F_{246}\! \left(x \right)+F_{230}\! \left(x \right)\\
F_{230}\! \left(x \right) &= \frac{F_{231}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)\\
F_{232}\! \left(x \right) &= -F_{233}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{234}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{11}\! \left(x \right) F_{236}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{237}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{238}\! \left(x \right)+F_{240}\! \left(x \right)+F_{242}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)\\
F_{239}\! \left(x \right) &= F_{11}\! \left(x \right) F_{112}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{11}\! \left(x \right) F_{237}\! \left(x \right)\\
F_{242}\! \left(x \right) &= F_{243}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{11}\! \left(x \right) F_{179}\! \left(x \right) F_{244}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{245}\! \left(x \right)\\
F_{245}\! \left(x \right) &= F_{0}\! \left(x \right) F_{11}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{123}\! \left(x \right) F_{214}\! \left(x \right)\\
F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)+F_{252}\! \left(x \right)\\
F_{249}\! \left(x \right) &= F_{23}\! \left(x \right) F_{250}\! \left(x \right)\\
F_{250}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{251}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{123}\! \left(x \right) F_{142}\! \left(x \right)\\
F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)\\
F_{254}\! \left(x \right) &= F_{11}\! \left(x \right) F_{184}\! \left(x \right) F_{255}\! \left(x \right)\\
F_{255}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{214}\! \left(x \right)\\
F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)\\
F_{257}\! \left(x \right) &= F_{11}\! \left(x \right) F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{259}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{11}\! \left(x \right) F_{113}\! \left(x \right) F_{51}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{263}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{261}\! \left(x \right) &= F_{262}\! \left(x \right)\\
F_{262}\! \left(x \right) &= F_{11}\! \left(x \right) F_{113}\! \left(x \right) F_{172}\! \left(x \right)\\
F_{263}\! \left(x \right) &= F_{264}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{11}\! \left(x \right) F_{120}\! \left(x \right)\\
\end{align*}\)