Av(12453, 12543)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 118, 672, 4256, 29176, 212586, 1625704, 12930160, 106242392, 897210996, 7756325952, ...

This specification was found using the strategy pack "All The Strategies 2 Tracked Fusion Tracked Component Fusion Symmetries" and has 35 rules.

Finding the specification took 13068 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 35 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\ F_{4}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{6}\! \left(x , y\right)\\ F_{5}\! \left(x \right) &= x\\ F_{6}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= -\frac{-F_{4}\! \left(x , y\right) y +F_{4}\! \left(x , 1\right)}{-1+y}\\ F_{8}\! \left(x , y\right) &= F_{9}\! \left(x , y , 1\right)\\ F_{9}\! \left(x , y , z\right) &= F_{10}\! \left(x , y\right) F_{11}\! \left(x , z , y\right)\\ F_{10}\! \left(x , y\right) &= y x\\ F_{11}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y , z\right)+F_{23}\! \left(x , y , z\right)+F_{24}\! \left(x , z , y\right)\\ F_{12}\! \left(x , y , z\right) &= F_{13}\! \left(x , y z , z\right)\\ F_{13}\! \left(x , y , z\right) &= -\frac{-F_{14}\! \left(x , y , z\right) y +F_{14}\! \left(x , 1, z\right)}{-1+y}\\ F_{14}\! \left(x , y , z\right) &= F_{15}\! \left(x , y , z\right) F_{5}\! \left(x \right)\\ F_{16}\! \left(x , y , z\right) &= F_{10}\! \left(x , y\right) F_{15}\! \left(x , y , z\right)\\ F_{17}\! \left(x , y , z\right) &= F_{16}\! \left(x , y , y z \right)\\ F_{18}\! \left(x , y , z\right) &= \frac{F_{17}\! \left(x , y , 1\right) y -F_{17}\! \left(x , y , \frac{z}{y}\right) z}{y -z}\\ F_{19}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x , y , z\right)+F_{20}\! \left(x , y , z\right)+F_{22}\! \left(x , z , y\right)\\ F_{19}\! \left(x , y , z\right) &= \frac{F_{6}\! \left(x , y\right) y -F_{6}\! \left(x , z\right) z}{y -z}\\ F_{20}\! \left(x , y , z\right) &= -\frac{-F_{21}\! \left(x , y , z\right) y +F_{21}\! \left(x , 1, z\right)}{-1+y}\\ F_{21}\! \left(x , y , z\right) &= \frac{F_{4}\! \left(x , y\right) y -F_{4}\! \left(x , z\right) z}{y -z}\\ F_{22}\! \left(x , y , z\right) &= \frac{y F_{9}\! \left(x , y , 1\right)-z F_{9}\! \left(x , y , \frac{z}{y}\right)}{y -z}\\ F_{23}\! \left(x , y , z\right) &= F_{18}\! \left(x , y z , z\right)\\ F_{24}\! \left(x , y , z\right) &= F_{10}\! \left(x , y\right) F_{25}\! \left(x , z , y\right)\\ F_{25}\! \left(x , y , z\right) &= F_{11}\! \left(x , y , z\right)+F_{26}\! \left(x , z , y\right)\\ F_{26}\! \left(x , y , z\right) &= F_{10}\! \left(x , y\right) F_{27}\! \left(x , z , y\right)\\ F_{27}\! \left(x , y , z\right) &= F_{28}\! \left(x , y z , z\right)\\ F_{29}\! \left(x , y , z\right) &= F_{10}\! \left(x , y\right) F_{28}\! \left(x , z , y\right)\\ F_{30}\! \left(x , y , z\right) &= F_{29}\! \left(x , y z , y\right)\\ F_{30}\! \left(x , y , z\right) &= F_{10}\! \left(x , z\right) F_{31}\! \left(x , y , z\right)\\ F_{32}\! \left(x , y , z\right) &= F_{10}\! \left(x , z\right) F_{31}\! \left(x , y , z\right)\\ F_{32}\! \left(x , y , z\right) &= F_{33}\! \left(x , y , z\right)\\ F_{33}\! \left(x , y , z\right) &= F_{34}\! \left(x , y , y z \right)\\ F_{15}\! \left(x , y , z\right) &= F_{34}\! \left(x , y , z\right)+F_{6}\! \left(x , y\right)\\ \end{align*}\)