Av(12453, 12534, 12543, 13452, 13542, 14352, 21453, 21534, 21543, 31524)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 110, 533, 2673, 13757, 72266, 385940, 2089319, 11439790, 63242238, 352515817, ...
Implicit Equation for the Generating Function
x(2x65x5+3x43x3+6x22x2)F(x)3x(x67x5+10x46x3+8x27x2)F(x)2(x22x1)(2x43x3+2x23x+1)F(x)(x1)(x2+1)(x2x1)=0
Recurrence
a(0)=1
a(1)=1
a(2)=2
a(3)=6
a(4)=24
a(5)=110
a(6)=533
a(7)=2673
a(8)=13757
a(9)=72266
a(10)=385940
a(11)=2089319
a(12)=11439790
a(13)=63242238
a(14)=352515817
a(15)=1979046864
a(16)=11180267860
a(17)=63510804376
a(18)=362556716475
a(19)=2078800648342
a(20)=11966509335141
a(21)=69131550779070
a(22)=400680304821635
a(23)=2329215624325159
a(24)=13577001634509322
a(25)=79338848765790520
a(26)=464699339792308730
a(27)=2727645599533038445
a(28)=16042317812182880276
a(29)=94525723736067575572
a(30)=557934247481359819342
a(31)=3298509385545323968801
a(32)=19530359779784586127068
a(33)=115803234634851747569433
a(34)=687563313358980179596077
a(35)=4087455241866433524477110
a(36)=24328265974906652484037972
a(37)=144963653160116788865119184
a(38)=864711281402797301024675382
a(39)=5163252287411397456977530156
a(40)=30859846767054265447391352218
a(41)=184612869011114357797882139173
a(42)=1105373408381709459056462285334
a(43)=6623953254928199696108353311228
a(44)=39725583356912922419593221620088
a(45)=238425528754059929098711919185366
a(46)=1432024146163412587485686431312899
a(47)=8606956871572391545886008173637700
a(48)=51765216509953360509430420679528454
a(49)=311532785426298198235672461809515279
a(50)=1876012374278334412001617744332431882
a(n+51)=n(n+2)a(n)8(2n+103)(n+51)+3(5n2+15n+8)a(n+1)32(2n+103)(n+51)+(23n2+187n+300)a(n+2)64(2n+103)(n+51)3(73n2+515n+854)a(n+3)64(2n+103)(n+51)+(145n2+1097n+1866)a(n+4)64(2n+103)(n+51)+3(179n2+2153n+6228)a(n+5)64(2n+103)(n+51)3(247n2+3791n+13340)a(n+6)64(2n+103)(n+51)(997n2+17747n+79050)a(n+7)64(2n+103)(n+51)+3(558n2+12583n+64690)a(n+8)32(2n+103)(n+51)+(85n25119n30054)a(n+9)64(2n+103)(n+51)(12083n2+316537n+1988244)a(n+10)64(2n+103)(n+51)+(6688n2+197387n+1352133)a(n+11)32(2n+103)(n+51)+(12295n2+360533n+2662716)a(n+12)64(2n+103)(n+51)(7793n2+274009n+2274138)a(n+13)16(2n+103)(n+51)+3(1659n2+99431n+1046436)a(n+14)64(2n+103)(n+51)+(10781n2+441019n+4258431)a(n+15)16(2n+103)(n+51)9(3037n2+168125n+1926284)a(n+16)64(2n+103)(n+51)(109609n2+4388381n+43299096)a(n+17)64(2n+103)(n+51)+(90257n2+4094029n+44645250)a(n+18)32(2n+103)(n+51)+3(2986n2+98846n+880347)a(n+19)32(2n+103)(n+51)(226889n2+11515669n+140767950)a(n+20)64(2n+103)(n+51)+(172919n2+9639985n+126774906)a(n+21)64(2n+103)(n+51)+(4309n2+1295963n+28147590)a(n+22)64(2n+103)(n+51)+(260n21068371n25544958)a(n+23)16(2n+103)(n+51)3(66519n2+2930639n+31859810)a(n+24)32(2n+103)(n+51)+3(95073n2+5570874n+80157814)a(n+25)32(2n+103)(n+51)+3(20473n2+182610n9298656)a(n+26)32(2n+103)(n+51)(964085n2+55422007n+791865954)a(n+27)64(2n+103)(n+51)+(618050n2+39390319n+614370576)a(n+28)32(2n+103)(n+51)(434522n2+25404124n+362341623)a(n+29)32(2n+103)(n+51)+(720095n2+29049727n+203437320)a(n+30)64(2n+103)(n+51)(1405165n2+72878183n+901291428)a(n+31)64(2n+103)(n+51)+3(217771n2+13983175n+227562428)a(n+32)64(2n+103)(n+51)+(817067n2+47290723n+663554133)a(n+33)32(2n+103)(n+51)3(383128n2+24895513n+403550962)a(n+34)32(2n+103)(n+51)+(462367n2+35863043n+693680724)a(n+35)16(2n+103)(n+51)(1602805n2+137276159n+2885843160)a(n+36)64(2n+103)(n+51)+(856475n2+68127418n+1349007570)a(n+37)32(2n+103)(n+51)3(442612n2+32140590n+578076831)a(n+38)32(2n+103)(n+51)+3(309147n2+21192810n+350625457)a(n+39)32(2n+103)(n+51)+(629567n2+55759939n+1232986278)a(n+40)32(2n+103)(n+51)(702529n2+58407083n+1214979753)a(n+41)16(2n+103)(n+51)+3(165957n2+14172356n+302625615)a(n+42)16(2n+103)(n+51)(158792n2+14301775n+321741069)a(n+43)16(2n+103)(n+51)(134461n2+11362763n+239290914)a(n+44)32(2n+103)(n+51)+3(13270n2+1186021n+26485254)a(n+45)8(2n+103)(n+51)3(1080n2+98293n+2230546)a(n+46)8(2n+103)(n+51)(9055n2+839531n+19455456)a(n+47)16(2n+103)(n+51)(53n2+6886n+209304)a(n+48)4(2n+103)(n+51)+(160n2+16004n+400209)a(n+49)4(2n+103)(n+51)+(34n2+3431n+86553)a(n+50)4(2n+103)(n+51),n51

This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 128 rules.

Found on January 25, 2022.

Finding the specification took 4394 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 128 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F11(x)F4(x)F4(x)=F0(x)+F5(x)F5(x)=F6(x)F6(x)=F11(x)F7(x)F7(x)=F12(x)+F8(x)F8(x)=F0(x)F9(x)F9(x)=F10(x)F11(x)F10(x)=F2(x)F11(x)=xF12(x)=F13(x)F13(x)=F11(x)F14(x)F14(x)=F121(x)+F15(x)F15(x)=F111(x)+F16(x)F16(x)=F107(x)+F17(x)F17(x)=F103(x)+F18(x)F18(x)=F101(x)F19(x)F19(x)=F20(x)+F98(x)F20(x)=F0(x)+F21(x)F21(x)=F22(x)F22(x)=F11(x)F23(x)F23(x)=F19(x)+F24(x)F24(x)=F25(x)+F96(x)F25(x)=F26(x)F26(x)=F11(x)F27(x)F27(x)=F28(x)+F4(x)F28(x)=F29(x)F29(x)=F11(x)F30(x)F30(x)=F31(x)F11(x)F31(x)=F32(x)F32(x)=F37(x)+F33(x)F33(x)=F34(x)+F35(x)F34(x)=F0(x)F4(x)F35(x)=F36(x)F36(x)=F11(x)F14(x)F37(x)=F38(x)+F4(x)F38(x)=F39(x)F39(x)=F11(x)F40(x)F40(x)=F41(x)F0(x)F41(x)=F42(x)+F14(x)F42(x)=F43(x)F46(x)F43(x)=F23(x)+F44(x)F44(x)=F11(x)F45(x)F45(x)=F20(x)+F5(x)F46(x)=F47(x)+F93(x)F47(x)=F48(x)F48(x)=F11(x)F49(x)F49(x)=F50(x)+F57(x)F50(x)=F1(x)+F51(x)F51(x)=F52(x)F52(x)=F11(x)F53(x)F53(x)=F50(x)+F54(x)F54(x)=F11(x)+F55(x)F55(x)=F56(x)F56(x)=F11(x)F51(x)F57(x)=F58(x)+F65(x)F58(x)=F59(x)F59(x)=F11(x)F60(x)F60(x)=F61(x)+F62(x)F61(x)=F1(x)+F11(x)F62(x)=F58(x)+F63(x)F63(x)=F64(x)F64(x)=F11(x)F58(x)F65(x)=F66(x)+F67(x)+F80(x)F66(x)=0F67(x)=F11(x)F68(x)F68(x)=F69(x)+F73(x)F69(x)=F51(x)+F70(x)F70(x)=F56(x)+F66(x)+F71(x)F71(x)=F11(x)F72(x)F72(x)=F54(x)F73(x)=F65(x)+F74(x)F74(x)=2F66(x)+F75(x)+F76(x)F75(x)=F11(x)F65(x)F76(x)=F11(x)F77(x)F77(x)=F78(x)F78(x)=F63(x)+F79(x)F79(x)=F75(x)F80(x)=F11(x)F81(x)F81(x)=F57(x)+F82(x)F82(x)=F83(x)+F88(x)F83(x)=F64(x)+F66(x)+F84(x)F84(x)=F11(x)F85(x)F85(x)=F86(x)+F87(x)F86(x)=F11(x)F87(x)=F63(x)F88(x)=2F66(x)+F75(x)+F89(x)F89(x)=F11(x)F90(x)F90(x)=F91(x)+F92(x)F91(x)=F55(x)F92(x)=F79(x)F93(x)=F2(x)+F94(x)F94(x)=F95(x)+F9(x)F95(x)=F1(x)+F47(x)F96(x)=F97(x)F97(x)=F11(x)F21(x)F98(x)=F5(x)+F99(x)F99(x)=F100(x)F100(x)=F11(x)F38(x)F101(x)=F102(x)+F9(x)F102(x)=F0(x)F2(x)F103(x)=F104(x)F45(x)F104(x)=F105(x)+F106(x)F105(x)=F0(x)F46(x)F106(x)=F11(x)F46(x)F107(x)=F0(x)F108(x)F108(x)=F109(x)+F110(x)F109(x)=F19(x)F2(x)F110(x)=F45(x)F93(x)F111(x)=F112(x)+F120(x)F112(x)=F0(x)F113(x)F113(x)=F119(x)+F114(x)F114(x)=F115(x)+F117(x)F115(x)=F116(x)F25(x)F116(x)=F47(x)+F95(x)F117(x)=F118(x)F118(x)=F11(x)F116(x)F21(x)F119(x)=F24(x)F47(x)F120(x)=F24(x)F46(x)F121(x)=F0(x)F122(x)F122(x)=F123(x)+F124(x)F123(x)=F2(x)F23(x)F124(x)=F125(x)F93(x)F125(x)=F126(x)F46(x)F126(x)=F127(x)+F40(x)F127(x)=F0(x)F23(x)