Av(1243, 2431, 3412, 4132)
View Raw Data
Generating Function
\(\displaystyle \frac{2 x^{7}-4 x^{6}-5 x^{5}+9 x^{4}-15 x^{3}+14 x^{2}-6 x +1}{\left(x^{2}-3 x +1\right) \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 20, 61, 167, 431, 1090, 2758, 7036, 18109, 46927, 122151, 318810, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}-3 x +1\right) \left(x -1\right)^{4} F \! \left(x \right)+2 x^{7}-4 x^{6}-5 x^{5}+9 x^{4}-15 x^{3}+14 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 61\)
\(\displaystyle a \! \left(6\right) = 167\)
\(\displaystyle a \! \left(7\right) = 431\)
\(\displaystyle a \! \left(n +2\right) = -\frac{2 n^{3}}{3}+3 n^{2}-a \! \left(n \right)+3 a \! \left(n +1\right)+\frac{2 n}{3}-4, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{2 n^{3}}{3}-5 n^{2}-9+\frac{34 n}{3}-\frac{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}}{5}+\frac{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}}{5} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Row And Col Placements" and has 57 rules.

Found on July 23, 2021.

Finding the specification took 13 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 57 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{13}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{13}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{17}\! \left(x \right) &= 0\\ F_{18}\! \left(x \right) &= F_{13}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{13}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{13}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{13}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{11}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{13}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{11} \left(x \right)^{2} F_{13}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{13}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{11}\! \left(x \right) F_{32}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{13}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{51}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{13}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{13}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{15}\! \left(x \right) F_{47}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{15}\! \left(x \right)\\ \end{align*}\)