Av(1243, 2431, 3214, 4132)
Generating Function
\(\displaystyle \frac{x^{10}+2 x^{9}-6 x^{8}-4 x^{7}+29 x^{6}-57 x^{5}+68 x^{4}-55 x^{3}+28 x^{2}-8 x +1}{\left(3 x^{3}-5 x^{2}+4 x -1\right) \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 20, 60, 159, 390, 924, 2173, 5142, 12296, 29697, 72273, 176810, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(3 x^{3}-5 x^{2}+4 x -1\right) \left(x -1\right)^{5} F \! \left(x \right)+x^{10}+2 x^{9}-6 x^{8}-4 x^{7}+29 x^{6}-57 x^{5}+68 x^{4}-55 x^{3}+28 x^{2}-8 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 60\)
\(\displaystyle a \! \left(6\right) = 159\)
\(\displaystyle a \! \left(7\right) = 390\)
\(\displaystyle a \! \left(8\right) = 924\)
\(\displaystyle a \! \left(9\right) = 2173\)
\(\displaystyle a \! \left(10\right) = 5142\)
\(\displaystyle a \! \left(n +3\right) = -\frac{n^{4}}{24}-\frac{n^{3}}{4}+\frac{73 n^{2}}{24}+3 a \! \left(n \right)-5 a \! \left(n +1\right)+4 a \! \left(n +2\right)-\frac{47 n}{4}+19, \quad n \geq 11\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 60\)
\(\displaystyle a \! \left(6\right) = 159\)
\(\displaystyle a \! \left(7\right) = 390\)
\(\displaystyle a \! \left(8\right) = 924\)
\(\displaystyle a \! \left(9\right) = 2173\)
\(\displaystyle a \! \left(10\right) = 5142\)
\(\displaystyle a \! \left(n +3\right) = -\frac{n^{4}}{24}-\frac{n^{3}}{4}+\frac{73 n^{2}}{24}+3 a \! \left(n \right)-5 a \! \left(n +1\right)+4 a \! \left(n +2\right)-\frac{47 n}{4}+19, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ 2 & n =2 \\ \frac{\left(-2914 \left(\left(\frac{84 \sqrt{31}}{1457}+\mathrm{I}\right) \sqrt{3}+\frac{252 \,\mathrm{I} \sqrt{31}}{1457}+1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+1050280-12617 \left(\left(\frac{141 \sqrt{31}}{1147}+\mathrm{I}\right) \sqrt{3}-\frac{423 \,\mathrm{I} \sqrt{31}}{1147}-1\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{47 \left(\left(\mathrm{I}-\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}+1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}-\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{2430648}\\+\\\frac{\left(12617 \left(\left(-\frac{141 \sqrt{31}}{1147}+\mathrm{I}\right) \sqrt{3}-\frac{423 \,\mathrm{I} \sqrt{31}}{1147}+1\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+1050280+2914 \,2^{\frac{1}{3}} \left(\left(-\frac{84 \sqrt{31}}{1457}+\mathrm{I}\right) \sqrt{3}+\frac{252 \,\mathrm{I} \sqrt{31}}{1457}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{47 \left(\left(\mathrm{I}+\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}-1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}+\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{2430648}\\+\\\frac{\left(\left(3102 \sqrt{3}\, 2^{\frac{2}{3}} \sqrt{31}-25234 \,2^{\frac{2}{3}}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+1050280+\left(336 \sqrt{31}\, \sqrt{3}\, 2^{\frac{1}{3}}+5828 \,2^{\frac{1}{3}}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{2^{\frac{1}{3}} \left(9 \sqrt{31}\, \sqrt{3}-47\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{4356}-\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{18}+\frac{5}{9}\right)^{-n}}{2430648}\\+\frac{\left(n -4\right) \left(n^{3}+10 n^{2}-45 n +66\right)}{24} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 79 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 79 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{30}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{20}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{20}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{41}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{50}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{26}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{63}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{26}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{71}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{72}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{42}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
\end{align*}\)