Av(1243, 2413, 3214, 4132)
View Raw Data
Generating Function
\(\displaystyle \frac{5 x^{7}-19 x^{6}+42 x^{5}-57 x^{4}+50 x^{3}-27 x^{2}+8 x -1}{\left(x -1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 62, 179, 496, 1347, 3621, 9670, 25683, 67875, 178578, 467968, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right)^{2} F \! \left(x \right)-5 x^{7}+19 x^{6}-42 x^{5}+57 x^{4}-50 x^{3}+27 x^{2}-8 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 62\)
\(\displaystyle a \! \left(6\right) = 179\)
\(\displaystyle a \! \left(7\right) = 496\)
\(\displaystyle a \! \left(n +6\right) = -9 a \! \left(n \right)+30 a \! \left(n +1\right)-49 a \! \left(n +2\right)+46 a \! \left(n +3\right)-26 a \! \left(n +4\right)+8 a \! \left(n +5\right)-1, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-10075 \,2^{\frac{1}{3}} \left(\left(\left(\frac{3 n}{65}+\frac{6033}{10075}\right) \sqrt{31}+\mathrm{I} n -\frac{103 \,\mathrm{I}}{13}\right) \sqrt{3}+\left(\frac{9 \,\mathrm{I} n}{65}+\frac{18099 \,\mathrm{I}}{10075}\right) \sqrt{31}+n -\frac{103}{13}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}-39215 \left(\left(\left(\frac{3 n}{23}-\frac{1797}{3565}\right) \sqrt{31}+\mathrm{I} n +\frac{173 \,\mathrm{I}}{115}\right) \sqrt{3}+\left(-\frac{9 \,\mathrm{I} n}{23}+\frac{5391 \,\mathrm{I}}{3565}\right) \sqrt{31}-n -\frac{173}{115}\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+1140304 n +12093224\right) \left(\frac{47 \left(\left(\mathrm{I}-\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}+1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}-\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{25116696}\\+\\\frac{\left(39215 \left(\left(\left(-\frac{3 n}{23}+\frac{1797}{3565}\right) \sqrt{31}+\mathrm{I} n +\frac{173 \,\mathrm{I}}{115}\right) \sqrt{3}+\left(-\frac{9 \,\mathrm{I} n}{23}+\frac{5391 \,\mathrm{I}}{3565}\right) \sqrt{31}+n +\frac{173}{115}\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+10075 \,2^{\frac{1}{3}} \left(\left(\left(-\frac{3 n}{65}-\frac{6033}{10075}\right) \sqrt{31}+\mathrm{I} n -\frac{103 \,\mathrm{I}}{13}\right) \sqrt{3}+\left(\frac{9 \,\mathrm{I} n}{65}+\frac{18099 \,\mathrm{I}}{10075}\right) \sqrt{31}-n +\frac{103}{13}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+1140304 n +12093224\right) \left(-\frac{47 \left(\left(\mathrm{I}+\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}-1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}+\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{25116696}\\-1+\\\frac{\left(10230 \left(\sqrt{3}\, \left(n -\frac{599}{155}\right) \sqrt{31}-\frac{23 n}{3}-\frac{173}{15}\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+930 \,2^{\frac{1}{3}} \left(\sqrt{3}\, \left(n +\frac{2011}{155}\right) \sqrt{31}+\frac{65 n}{3}-\frac{515}{3}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+1140304 n +12093224\right) \left(\frac{2^{\frac{1}{3}} \left(9 \sqrt{31}\, \sqrt{3}-47\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{4356}-\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{18}+\frac{5}{9}\right)^{-n}}{25116696} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 122 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 122 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{15}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{20}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{20}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{48}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{60}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{48}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{68}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{80}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{26}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{72}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= 3 F_{15}\! \left(x \right)+F_{106}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{4}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{104}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{100}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{4}\! \left(x \right) F_{93}\! \left(x \right)\\ F_{107}\! \left(x \right) &= 3 F_{15}\! \left(x \right)+F_{108}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{119}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{118}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{117}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{26}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{111}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{120}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{121}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{119}\! \left(x \right) F_{4}\! \left(x \right)\\ \end{align*}\)