Av(1243, 2413, 3214)
Generating Function
\(\displaystyle -\frac{\left(x -1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right)^{2}}{x^{9}+2 x^{8}-27 x^{7}+86 x^{6}-144 x^{5}+150 x^{4}-100 x^{3}+42 x^{2}-10 x +1}\)
Counting Sequence
1, 1, 2, 6, 21, 73, 245, 804, 2617, 8511, 27709, 90283, 294231, 958826, 3124175, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{9}+2 x^{8}-27 x^{7}+86 x^{6}-144 x^{5}+150 x^{4}-100 x^{3}+42 x^{2}-10 x +1\right) F \! \left(x \right)+\left(x -1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 73\)
\(\displaystyle a \! \left(6\right) = 245\)
\(\displaystyle a \! \left(7\right) = 804\)
\(\displaystyle a \! \left(8\right) = 2617\)
\(\displaystyle a \! \left(n +9\right) = -a \! \left(n \right)-2 a \! \left(n +1\right)+27 a \! \left(n +2\right)-86 a \! \left(n +3\right)+144 a \! \left(n +4\right)-150 a \! \left(n +5\right)+100 a \! \left(n +6\right)-42 a \! \left(n +7\right)+10 a \! \left(n +8\right), \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 73\)
\(\displaystyle a \! \left(6\right) = 245\)
\(\displaystyle a \! \left(7\right) = 804\)
\(\displaystyle a \! \left(8\right) = 2617\)
\(\displaystyle a \! \left(n +9\right) = -a \! \left(n \right)-2 a \! \left(n +1\right)+27 a \! \left(n +2\right)-86 a \! \left(n +3\right)+144 a \! \left(n +4\right)-150 a \! \left(n +5\right)+100 a \! \left(n +6\right)-42 a \! \left(n +7\right)+10 a \! \left(n +8\right), \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle -\frac{7957283969 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +7}}{17682055219}-\frac{7957283969 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +7}}{17682055219}-\frac{7957283969 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +7}}{17682055219}-\frac{7957283969 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +7}}{17682055219}-\frac{7957283969 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +7}}{17682055219}-\frac{7957283969 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +7}}{17682055219}-\frac{7957283969 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +7}}{17682055219}-\frac{7957283969 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +7}}{17682055219}-\frac{7957283969 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =9\right)^{-n +7}}{17682055219}-\frac{17392853887 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +6}}{17682055219}-\frac{17392853887 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +6}}{17682055219}-\frac{17392853887 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +6}}{17682055219}-\frac{17392853887 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +6}}{17682055219}-\frac{17392853887 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +6}}{17682055219}-\frac{17392853887 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +6}}{17682055219}-\frac{17392853887 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +6}}{17682055219}-\frac{17392853887 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +6}}{17682055219}-\frac{17392853887 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =9\right)^{-n +6}}{17682055219}+\frac{213069428733 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +5}}{17682055219}+\frac{213069428733 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +5}}{17682055219}+\frac{213069428733 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +5}}{17682055219}+\frac{213069428733 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +5}}{17682055219}+\frac{213069428733 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +5}}{17682055219}+\frac{213069428733 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +5}}{17682055219}+\frac{213069428733 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +5}}{17682055219}+\frac{213069428733 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +5}}{17682055219}+\frac{213069428733 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =9\right)^{-n +5}}{17682055219}-\frac{640837687333 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +4}}{17682055219}-\frac{640837687333 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +4}}{17682055219}-\frac{640837687333 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +4}}{17682055219}-\frac{640837687333 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +4}}{17682055219}-\frac{640837687333 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +4}}{17682055219}-\frac{640837687333 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +4}}{17682055219}-\frac{640837687333 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +4}}{17682055219}-\frac{640837687333 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +4}}{17682055219}-\frac{640837687333 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =9\right)^{-n +4}}{17682055219}+\frac{988919094792 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +3}}{17682055219}+\frac{988919094792 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +3}}{17682055219}+\frac{988919094792 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +3}}{17682055219}+\frac{988919094792 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +3}}{17682055219}+\frac{988919094792 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +3}}{17682055219}+\frac{988919094792 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +3}}{17682055219}+\frac{988919094792 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +3}}{17682055219}+\frac{988919094792 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +3}}{17682055219}+\frac{988919094792 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =9\right)^{-n +3}}{17682055219}-\frac{915632090270 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +2}}{17682055219}-\frac{915632090270 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +2}}{17682055219}-\frac{915632090270 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +2}}{17682055219}-\frac{915632090270 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +2}}{17682055219}-\frac{915632090270 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +2}}{17682055219}-\frac{915632090270 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +2}}{17682055219}-\frac{915632090270 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +2}}{17682055219}-\frac{915632090270 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +2}}{17682055219}-\frac{915632090270 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =9\right)^{-n +2}}{17682055219}+\frac{508840098203 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n +1}}{17682055219}+\frac{508840098203 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n +1}}{17682055219}+\frac{508840098203 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n +1}}{17682055219}+\frac{508840098203 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n +1}}{17682055219}+\frac{508840098203 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n +1}}{17682055219}+\frac{508840098203 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n +1}}{17682055219}+\frac{508840098203 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n +1}}{17682055219}+\frac{508840098203 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n +1}}{17682055219}+\frac{508840098203 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =9\right)^{-n +1}}{17682055219}+\frac{21034580874 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n -1}}{17682055219}+\frac{21034580874 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n -1}}{17682055219}+\frac{21034580874 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n -1}}{17682055219}+\frac{21034580874 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n -1}}{17682055219}+\frac{21034580874 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n -1}}{17682055219}+\frac{21034580874 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n -1}}{17682055219}+\frac{21034580874 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n -1}}{17682055219}+\frac{21034580874 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n -1}}{17682055219}+\frac{21034580874 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =9\right)^{-n -1}}{17682055219}-\frac{158274501633 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =1\right)^{-n}}{17682055219}-\frac{158274501633 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =2\right)^{-n}}{17682055219}-\frac{158274501633 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =3\right)^{-n}}{17682055219}-\frac{158274501633 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =4\right)^{-n}}{17682055219}-\frac{158274501633 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =5\right)^{-n}}{17682055219}-\frac{158274501633 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =6\right)^{-n}}{17682055219}-\frac{158274501633 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =7\right)^{-n}}{17682055219}-\frac{158274501633 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =8\right)^{-n}}{17682055219}-\frac{158274501633 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-27 Z^{7}+86 Z^{6}-144 Z^{5}+150 Z^{4}-100 Z^{3}+42 Z^{2}-10 Z +1, \mathit{index} =9\right)^{-n}}{17682055219}\)
This specification was found using the strategy pack "Point Placements" and has 121 rules.
Found on January 18, 2022.Finding the specification took 4 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 121 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{15}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{42}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{54}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{42}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{65}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{77}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{78}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= 3 F_{15}\! \left(x \right)+F_{105}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{103}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{106}\! \left(x \right) &= 3 F_{15}\! \left(x \right)+F_{107}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{118}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{117}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{115}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{116}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{76}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{110}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{119}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{120}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{118}\! \left(x \right) F_{4}\! \left(x \right)\\
\end{align*}\)