Av(1243, 2413, 3142, 3214)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(3 x^{3}-5 x^{2}+4 x -1\right) \left(x -1\right)^{3}}{x^{8}-2 x^{7}-8 x^{6}+31 x^{5}-51 x^{4}+47 x^{3}-26 x^{2}+8 x -1}\)
Counting Sequence
1, 1, 2, 6, 20, 64, 198, 606, 1857, 5711, 17604, 54311, 167588, 517132, 1595752, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{8}-2 x^{7}-8 x^{6}+31 x^{5}-51 x^{4}+47 x^{3}-26 x^{2}+8 x -1\right) F \! \left(x \right)+\left(3 x^{3}-5 x^{2}+4 x -1\right) \left(x -1\right)^{3} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 64\)
\(\displaystyle a \! \left(6\right) = 198\)
\(\displaystyle a \! \left(7\right) = 606\)
\(\displaystyle a \! \left(n +8\right) = a \! \left(n \right)-2 a \! \left(n +1\right)-8 a \! \left(n +2\right)+31 a \! \left(n +3\right)-51 a \! \left(n +4\right)+47 a \! \left(n +5\right)-26 a \! \left(n +6\right)+8 a \! \left(n +7\right), \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \frac{53581815 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n +6}}{348077333}+\frac{53581815 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n +6}}{348077333}+\frac{53581815 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n +6}}{348077333}+\frac{53581815 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n +6}}{348077333}+\frac{53581815 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n +6}}{348077333}+\frac{53581815 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =6\right)^{-n +6}}{348077333}+\frac{53581815 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =7\right)^{-n +6}}{348077333}+\frac{53581815 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =8\right)^{-n +6}}{348077333}-\frac{78276271 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n +5}}{348077333}-\frac{78276271 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n +5}}{348077333}-\frac{78276271 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n +5}}{348077333}-\frac{78276271 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n +5}}{348077333}-\frac{78276271 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n +5}}{348077333}-\frac{78276271 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =6\right)^{-n +5}}{348077333}-\frac{78276271 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =7\right)^{-n +5}}{348077333}-\frac{78276271 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =8\right)^{-n +5}}{348077333}-\frac{475894572 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n +4}}{348077333}-\frac{475894572 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n +4}}{348077333}-\frac{475894572 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n +4}}{348077333}-\frac{475894572 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n +4}}{348077333}-\frac{475894572 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n +4}}{348077333}-\frac{475894572 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =6\right)^{-n +4}}{348077333}-\frac{475894572 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =7\right)^{-n +4}}{348077333}-\frac{475894572 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =8\right)^{-n +4}}{348077333}+\frac{1409200709 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n +3}}{348077333}+\frac{1409200709 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n +3}}{348077333}+\frac{1409200709 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n +3}}{348077333}+\frac{1409200709 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n +3}}{348077333}+\frac{1409200709 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n +3}}{348077333}+\frac{1409200709 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =6\right)^{-n +3}}{348077333}+\frac{1409200709 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =7\right)^{-n +3}}{348077333}+\frac{1409200709 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =8\right)^{-n +3}}{348077333}-\frac{1923132594 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n +2}}{348077333}-\frac{1923132594 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n +2}}{348077333}-\frac{1923132594 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n +2}}{348077333}-\frac{1923132594 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n +2}}{348077333}-\frac{1923132594 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n +2}}{348077333}-\frac{1923132594 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =6\right)^{-n +2}}{348077333}-\frac{1923132594 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =7\right)^{-n +2}}{348077333}-\frac{1923132594 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =8\right)^{-n +2}}{348077333}+\frac{1367356097 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n +1}}{348077333}+\frac{1367356097 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n +1}}{348077333}+\frac{1367356097 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n +1}}{348077333}+\frac{1367356097 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n +1}}{348077333}+\frac{1367356097 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n +1}}{348077333}+\frac{1367356097 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =6\right)^{-n +1}}{348077333}+\frac{1367356097 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =7\right)^{-n +1}}{348077333}+\frac{1367356097 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =8\right)^{-n +1}}{348077333}+\frac{100218281 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n -1}}{348077333}+\frac{100218281 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n -1}}{348077333}+\frac{100218281 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n -1}}{348077333}+\frac{100218281 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n -1}}{348077333}+\frac{100218281 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n -1}}{348077333}+\frac{100218281 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =6\right)^{-n -1}}{348077333}+\frac{100218281 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =7\right)^{-n -1}}{348077333}+\frac{100218281 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =8\right)^{-n -1}}{348077333}-\frac{514779111 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =1\right)^{-n}}{348077333}-\frac{514779111 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =2\right)^{-n}}{348077333}-\frac{514779111 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =3\right)^{-n}}{348077333}-\frac{514779111 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =4\right)^{-n}}{348077333}-\frac{514779111 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =5\right)^{-n}}{348077333}-\frac{514779111 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =6\right)^{-n}}{348077333}-\frac{514779111 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =7\right)^{-n}}{348077333}-\frac{514779111 \mathit{RootOf} \left(Z^{8}-2 Z^{7}-8 Z^{6}+31 Z^{5}-51 Z^{4}+47 Z^{3}-26 Z^{2}+8 Z -1, \mathit{index} =8\right)^{-n}}{348077333}\)

This specification was found using the strategy pack "Point Placements" and has 77 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 77 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{30}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{45}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{67}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{45}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ \end{align*}\)