Av(1243, 2413, 2431, 3241, 4132)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(2 x -1\right) \left(x^{5}-5 x^{4}+9 x^{3}-10 x^{2}+5 x -1\right)}{\left(x^{2}-3 x +1\right) \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 154, 406, 1050, 2702, 6966, 18031, 46852, 122096, 318799, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(x -1\right)^{5} F \! \left(x \right)+\left(2 x -1\right) \left(x^{5}-5 x^{4}+9 x^{3}-10 x^{2}+5 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 154\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right)-\frac{n \left(n -5\right) \left(n +2\right) \left(n +1\right)}{24}, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \frac{n^{4}}{24}-\frac{n^{3}}{4}+\frac{11 n^{2}}{24}-\frac{5 n}{4}+1-\frac{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}}{5}+\frac{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}}{5}\)

This specification was found using the strategy pack "Point Placements" and has 52 rules.

Found on January 18, 2022.

Finding the specification took 0 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 52 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{21}\! \left(x \right) &= 0\\ F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{33}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{45}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{46}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{12}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right)\\ \end{align*}\)