Av(1243, 2413, 2431, 3214)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(x^{2}-x +1\right) \left(x^{6}+3 x^{4}-11 x^{3}+13 x^{2}-6 x +1\right)}{\left(3 x^{3}-5 x^{2}+4 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 63, 187, 534, 1491, 4105, 11185, 30213, 81002, 215767, 571548, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(3 x^{3}-5 x^{2}+4 x -1\right)^{2} F \! \left(x \right)+\left(x^{2}-x +1\right) \left(x^{6}+3 x^{4}-11 x^{3}+13 x^{2}-6 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 187\)
\(\displaystyle a \! \left(7\right) = 534\)
\(\displaystyle a \! \left(8\right) = 1491\)
\(\displaystyle a \! \left(n +6\right) = -9 a \! \left(n \right)+30 a \! \left(n +1\right)-49 a \! \left(n +2\right)+46 a \! \left(n +3\right)-26 a \! \left(n +4\right)+8 a \! \left(n +5\right), \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ 2 & n =2 \\ \frac{\left(-109120 \,2^{\frac{2}{3}} \left(\left(\left(\frac{51 n}{160}-\frac{3573}{9920}\right) \sqrt{31}+\mathrm{I} n -\frac{609 \,\mathrm{I}}{320}\right) \sqrt{3}+\left(-\frac{153 \,\mathrm{I} n}{160}+\frac{10719 \,\mathrm{I}}{9920}\right) \sqrt{31}-n +\frac{609}{320}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}-99107 \left(\left(\left(-\frac{87 n}{3197}-\frac{90}{99107}\right) \sqrt{31}+\mathrm{I} n -\frac{3084 \,\mathrm{I}}{3197}\right) \sqrt{3}+\left(-\frac{261 \,\mathrm{I} n}{3197}-\frac{270 \,\mathrm{I}}{99107}\right) \sqrt{31}+n -\frac{3084}{3197}\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+20645504 n +22325952\right) \left(\frac{47 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}+1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}-\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{226050264}\\+\\\frac{\left(109120 \left(\left(\left(-\frac{51 n}{160}+\frac{3573}{9920}\right) \sqrt{31}+\mathrm{I} n -\frac{609 \,\mathrm{I}}{320}\right) \sqrt{3}+\left(-\frac{153 \,\mathrm{I} n}{160}+\frac{10719 \,\mathrm{I}}{9920}\right) \sqrt{31}+n -\frac{609}{320}\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+99107 \left(\left(\left(\frac{87 n}{3197}+\frac{90}{99107}\right) \sqrt{31}+\mathrm{I} n -\frac{3084 \,\mathrm{I}}{3197}\right) \sqrt{3}+\left(-\frac{261 \,\mathrm{I} n}{3197}-\frac{270 \,\mathrm{I}}{99107}\right) \sqrt{31}-n +\frac{3084}{3197}\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+20645504 n +22325952\right) \left(-\frac{47 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}+\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{226050264}\\-\\\frac{29 \left(\frac{2^{\frac{1}{3}} \left(9 \sqrt{31}\, \sqrt{3}-47\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{4356}-\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{18}+\frac{5}{9}\right)^{-n} \left(-\frac{374 \,2^{\frac{2}{3}} \left(\sqrt{3}\, \left(n -\frac{1191}{1054}\right) \sqrt{31}-\frac{160 n}{51}+\frac{203}{34}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{29}+\left(\sqrt{3}\, \left(n +\frac{30}{899}\right) \sqrt{31}-\frac{3197 n}{87}+\frac{1028}{29}\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{332992 n}{87}-\frac{120032}{29}\right)}{1215324} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 59 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 59 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{30}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{53}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ \end{align*}\)