Av(1243, 2341, 3142)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{4}-3 x^{3}+10 x^{2}-6 x +1}{\left(x^{2}-3 x +1\right) \left(2 x^{2}-4 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 21, 75, 266, 935, 3263, 11326, 39155, 134955, 464094, 1593231, 5462447, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(2 x^{2}-4 x +1\right) F \! \left(x \right)-x^{4}+3 x^{3}-10 x^{2}+6 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+10 a \! \left(n +1\right)-15 a \! \left(n +2\right)+7 a \! \left(n +3\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(8 \sqrt{5}-20\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{20}+\frac{\left(-8 \sqrt{5}-20\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{20}+\\\frac{\left(-15 \sqrt{2}+25\right) \left(1-\frac{\sqrt{2}}{2}\right)^{-n}}{20}+\frac{\left(15 \sqrt{2}+25\right) \left(1+\frac{\sqrt{2}}{2}\right)^{-n}}{20} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 25 rules.

Found on July 23, 2021.

Finding the specification took 10 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 25 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ \end{align*}\)