Av(1243, 2314, 3214, 4123, 4132)
Generating Function
\(\displaystyle -\frac{2 x^{8}+2 x^{7}+x^{6}+3 x^{5}+7 x^{4}+2 x^{3}-2 x +1}{\left(x -1\right) \left(x^{3}+x^{2}+x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 50, 122, 285, 637, 1381, 2930, 6108, 12559, 25540, 51466, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{3}+x^{2}+x -1\right)^{2} F \! \left(x \right)+2 x^{8}+2 x^{7}+x^{6}+3 x^{5}+7 x^{4}+2 x^{3}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 122\)
\(\displaystyle a \! \left(7\right) = 285\)
\(\displaystyle a \! \left(8\right) = 637\)
\(\displaystyle a \! \left(n +2\right) = -\frac{a \! \left(n \right)}{3}-\frac{2 a \! \left(n +1\right)}{3}+\frac{a \! \left(n +4\right)}{3}+\frac{2 a \! \left(n +5\right)}{3}-\frac{a \! \left(n +6\right)}{3}+\frac{16}{3}, \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 122\)
\(\displaystyle a \! \left(7\right) = 285\)
\(\displaystyle a \! \left(8\right) = 637\)
\(\displaystyle a \! \left(n +2\right) = -\frac{a \! \left(n \right)}{3}-\frac{2 a \! \left(n +1\right)}{3}+\frac{a \! \left(n +4\right)}{3}+\frac{2 a \! \left(n +5\right)}{3}-\frac{a \! \left(n +6\right)}{3}+\frac{16}{3}, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}-1 & n =0 \\ \frac{\left(\left(-693 \left(-\frac{556}{231}+n \right) \left(\mathrm{I}+\frac{\sqrt{3}}{3}\right) \sqrt{11}+1221 \left(1+\mathrm{I} \sqrt{3}\right) \left(n -\frac{100}{37}\right)\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-198 \left(\mathrm{I}-\frac{\sqrt{3}}{3}\right) \left(n +\frac{56}{33}\right) \sqrt{11}+528 \left(n +\frac{1}{2}\right) \left(\mathrm{I} \sqrt{3}-1\right)\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+1320 n -5808\right) \left(\frac{\left(\left(17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}-9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}-\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{5808}\\+\\\frac{\left(\left(693 \left(\mathrm{I}-\frac{\sqrt{3}}{3}\right) \left(-\frac{556}{231}+n \right) \sqrt{11}-1221 \left(n -\frac{100}{37}\right) \left(\mathrm{I} \sqrt{3}-1\right)\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(198 \left(\mathrm{I}+\frac{\sqrt{3}}{3}\right) \left(n +\frac{56}{33}\right) \sqrt{11}-528 \left(n +\frac{1}{2}\right) \left(1+\mathrm{I} \sqrt{3}\right)\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+1320 n -5808\right) \left(\frac{\left(\left(-17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}+\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{5808}\\+4+\\\frac{\left(\left(\left(462 n -1112\right) \sqrt{3}\, \sqrt{11}-2442 n +6600\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(\left(-132 n -224\right) \sqrt{3}\, \sqrt{11}+1056 n +528\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+1320 n -5808\right) \left(\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}-\frac{1}{3}+\frac{17 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{11}\, \sqrt{3}}{4}\right)^{-n}}{5808} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 158 rules.
Found on January 18, 2022.Finding the specification took 3 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 158 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{20}\! \left(x \right) &= 0\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{28}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{20}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{32}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{52}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{52}\! \left(x \right) &= x^{2}\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= x^{2}\\
F_{58}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{60}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{65}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{66}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{4}\! \left(x \right) F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{88}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{93}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{100}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{104}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{105}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{110}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{107}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{125}\! \left(x \right)\\
F_{111}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{112}\! \left(x \right)+F_{113}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{118}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{119}\! \left(x \right) &= 3 F_{20}\! \left(x \right)+F_{120}\! \left(x \right)+F_{124}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{123}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{116}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{111}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{125}\! \left(x \right) &= 3 F_{20}\! \left(x \right)+F_{126}\! \left(x \right)+F_{133}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{127}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{129}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{108}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{135}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{132}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{132}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{138}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{149}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{20}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{144}\! \left(x \right)\\
F_{144}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{145}\! \left(x \right)+F_{148}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{146}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{140}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{149}\! \left(x \right) &= 2 F_{20}\! \left(x \right)+F_{150}\! \left(x \right)+F_{154}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{151}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{156}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{155}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{153}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{153}\! \left(x \right) F_{4}\! \left(x \right)\\
\end{align*}\)