Av(1243, 2314, 3214)
Generating Function
\(\displaystyle -\frac{2 x^{5}-8 x^{4}+12 x^{3}-12 x^{2}+6 x -1}{\left(x^{2}-x +1\right) \left(x^{4}-5 x^{3}+10 x^{2}-6 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 21, 75, 267, 950, 3384, 12065, 43034, 153524, 547744, 1954328, 6973114, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-x +1\right) \left(x^{4}-5 x^{3}+10 x^{2}-6 x +1\right) F \! \left(x \right)+2 x^{5}-8 x^{4}+12 x^{3}-12 x^{2}+6 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 75\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+6 a \! \left(n +1\right)-16 a \! \left(n +2\right)+21 a \! \left(n +3\right)-17 a \! \left(n +4\right)+7 a \! \left(n +5\right), \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 75\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+6 a \! \left(n +1\right)-16 a \! \left(n +2\right)+21 a \! \left(n +3\right)-17 a \! \left(n +4\right)+7 a \! \left(n +5\right), \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle -\frac{2510 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+16 Z^{4}-21 Z^{3}+17 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{167817}+\frac{11111 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+16 Z^{4}-21 Z^{3}+17 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{167817}-\frac{44542 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+16 Z^{4}-21 Z^{3}+17 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{167817}+\frac{88537 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+16 Z^{4}-21 Z^{3}+17 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{167817}-\frac{58421 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+16 Z^{4}-21 Z^{3}+17 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{167817}+\frac{16384 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+16 Z^{4}-21 Z^{3}+17 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{167817}\)
This specification was found using the strategy pack "Point Placements" and has 100 rules.
Found on January 18, 2022.Finding the specification took 5 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 100 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{31}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{39}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{58}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{71}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{72}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= 3 F_{15}\! \left(x \right)+F_{86}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{93}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{4}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{72}\! \left(x \right)+F_{76}\! \left(x \right)\\
\end{align*}\)