Av(1243, 2314, 3124, 3412)
Generating Function
\(\displaystyle -\frac{4 x^{7}-21 x^{6}+47 x^{5}-64 x^{4}+54 x^{3}-28 x^{2}+8 x -1}{\left(2 x -1\right) \left(-1+x \right)^{7}}\)
Counting Sequence
1, 1, 2, 6, 20, 63, 182, 487, 1225, 2933, 6750, 15048, 32702, 69639, 145946, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(-1+x \right)^{7} F \! \left(x \right)+4 x^{7}-21 x^{6}+47 x^{5}-64 x^{4}+54 x^{3}-28 x^{2}+8 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 182\)
\(\displaystyle a \! \left(7\right) = 487\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)+\frac{\left(n -1\right) \left(n^{5}-2 n^{4}+23 n^{3}+218 n^{2}-168 n +720\right)}{720}, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 63\)
\(\displaystyle a \! \left(6\right) = 182\)
\(\displaystyle a \! \left(7\right) = 487\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)+\frac{\left(n -1\right) \left(n^{5}-2 n^{4}+23 n^{3}+218 n^{2}-168 n +720\right)}{720}, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle -9+10 \,2^{n}-\frac{147 n}{20}-\frac{n^{6}}{720}-\frac{n^{5}}{240}-\frac{11 n^{4}}{144}-\frac{31 n^{3}}{48}-\frac{173 n^{2}}{90}\)
This specification was found using the strategy pack "Point Placements" and has 42 rules.
Found on July 23, 2021.Finding the specification took 7 seconds.
Copy 42 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{34}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{39}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{38}\! \left(x \right)\\
\end{align*}\)