Av(1243, 2314, 2431, 3142)
Generating Function
\(\displaystyle -\frac{x^{8}+3 x^{7}-25 x^{6}+72 x^{5}-106 x^{4}+88 x^{3}-41 x^{2}+10 x -1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right)^{2} \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 210, 645, 1925, 5619, 16127, 45697, 128229, 357130, 988838, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{2}-3 x +1\right)^{2} \left(x -1\right)^{3} F \! \left(x \right)+x^{8}+3 x^{7}-25 x^{6}+72 x^{5}-106 x^{4}+88 x^{3}-41 x^{2}+10 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 66\)
\(\displaystyle a \! \left(6\right) = 210\)
\(\displaystyle a \! \left(7\right) = 645\)
\(\displaystyle a \! \left(8\right) = 1925\)
\(\displaystyle a \! \left(n +5\right) = -\frac{n^{2}}{2}+28 a \! \left(n +2\right)-23 a \! \left(n +3\right)+8 a \! \left(n +4\right)+2 a \! \left(n \right)-13 a \! \left(n +1\right)+\frac{n}{2}-2, \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 66\)
\(\displaystyle a \! \left(6\right) = 210\)
\(\displaystyle a \! \left(7\right) = 645\)
\(\displaystyle a \! \left(8\right) = 1925\)
\(\displaystyle a \! \left(n +5\right) = -\frac{n^{2}}{2}+28 a \! \left(n +2\right)-23 a \! \left(n +3\right)+8 a \! \left(n +4\right)+2 a \! \left(n \right)-13 a \! \left(n +1\right)+\frac{n}{2}-2, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(\left(7 n +9\right) \sqrt{5}-15 n -15\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{10}+\\\frac{\left(\left(-7 n -9\right) \sqrt{5}-15 n -15\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{10}+\frac{n^{2}}{2}-\frac{3 n}{2}-3 \,2^{-1+n}+6 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 104 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 104 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{23}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{12}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{12}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{34}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{12}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{41}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{12}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{12}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{12}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{12}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{12}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{12}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= 3 F_{15}\! \left(x \right)+F_{62}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{12}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{67}\! \left(x \right) &= 3 F_{15}\! \left(x \right)+F_{68}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{12}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{12}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{12}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{77}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{12}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{52}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{12}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{12}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{12}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{93}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{12}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{92}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{12}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{98}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{103}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{102}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{98}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{12}\! \left(x \right) F_{87}\! \left(x \right)\\
\end{align*}\)