Av(1243, 2314, 2431, 3124)
Generating Function
\(\displaystyle -\frac{2 x^{7}-9 x^{6}+19 x^{5}-29 x^{4}+30 x^{3}-20 x^{2}+7 x -1}{\left(x -1\right)^{2} \left(x^{3}-2 x^{2}+3 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 64, 194, 563, 1579, 4311, 11524, 30297, 78601, 201734, 513185, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{2} \left(x^{3}-2 x^{2}+3 x -1\right)^{2} F \! \left(x \right)+2 x^{7}-9 x^{6}+19 x^{5}-29 x^{4}+30 x^{3}-20 x^{2}+7 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 64\)
\(\displaystyle a \! \left(6\right) = 194\)
\(\displaystyle a \! \left(7\right) = 563\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+4 a \! \left(n +1\right)-10 a \! \left(n +2\right)+14 a \! \left(n +3\right)-13 a \! \left(n +4\right)+6 a \! \left(n +5\right)+n +3, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 64\)
\(\displaystyle a \! \left(6\right) = 194\)
\(\displaystyle a \! \left(7\right) = 563\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+4 a \! \left(n +1\right)-10 a \! \left(n +2\right)+14 a \! \left(n +3\right)-13 a \! \left(n +4\right)+6 a \! \left(n +5\right)+n +3, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \frac{\left(-5865 \,2^{\frac{2}{3}} \left(-\frac{3 \left(n -\frac{383}{69}\right) \left(\mathrm{I}-\frac{\sqrt{3}}{3}\right) \sqrt{23}}{17}+\left(\mathrm{I} \sqrt{3}-1\right) \left(n -\frac{39}{17}\right)\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}-138 \,2^{\frac{1}{3}} \left(6 \left(\mathrm{I}+\frac{\sqrt{3}}{3}\right) \left(n -\frac{193}{138}\right) \sqrt{23}+\left(n -36\right) \left(1+\mathrm{I} \sqrt{3}\right)\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+69000 n \right) \left(\frac{11 \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{317400}+\frac{\left(5865 \,2^{\frac{2}{3}} \left(-\frac{3 \left(n -\frac{383}{69}\right) \left(\mathrm{I}+\frac{\sqrt{3}}{3}\right) \sqrt{23}}{17}+\left(n -\frac{39}{17}\right) \left(1+\mathrm{I} \sqrt{3}\right)\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+138 \left(6 \left(\mathrm{I}-\frac{\sqrt{3}}{3}\right) \left(n -\frac{193}{138}\right) \sqrt{23}+\left(\mathrm{I} \sqrt{3}-1\right) \left(n -36\right)\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+69000 n \right) \left(-\frac{11 \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{317400}+\frac{\left(690 \left(\sqrt{3}\, \left(n -\frac{383}{69}\right) \sqrt{23}-17 n +39\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+552 \,2^{\frac{1}{3}} \left(\sqrt{3}\, \left(n -\frac{193}{138}\right) \sqrt{23}+\frac{n}{2}-18\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+69000 n \right) \left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{317400}+n +1\)
This specification was found using the strategy pack "Point Placements" and has 54 rules.
Found on January 18, 2022.Finding the specification took 0 seconds.
Copy 54 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{25}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{33}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{46}\! \left(x \right)\\
\end{align*}\)