Av(1243, 2143, 2431, 3214)
View Raw Data
Generating Function
\(\displaystyle \frac{2 x^{9}-4 x^{8}-12 x^{7}+53 x^{6}-97 x^{5}+107 x^{4}-77 x^{3}+35 x^{2}-9 x +1}{\left(x -1\right)^{2} \left(3 x^{3}-5 x^{2}+4 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 64, 191, 542, 1494, 4053, 10889, 29049, 77045, 203318, 534203, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right)^{2} \left(3 x^{3}-5 x^{2}+4 x -1\right)^{2} F \! \left(x \right)+2 x^{9}-4 x^{8}-12 x^{7}+53 x^{6}-97 x^{5}+107 x^{4}-77 x^{3}+35 x^{2}-9 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 64\)
\(\displaystyle a \! \left(6\right) = 191\)
\(\displaystyle a \! \left(7\right) = 542\)
\(\displaystyle a \! \left(8\right) = 1494\)
\(\displaystyle a \! \left(9\right) = 4053\)
\(\displaystyle a \! \left(n +6\right) = -9 a \! \left(n \right)+30 a \! \left(n +1\right)-49 a \! \left(n +2\right)+46 a \! \left(n +3\right)-26 a \! \left(n +4\right)+8 a \! \left(n +5\right)-n, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ \frac{\left(-18817 \,2^{\frac{1}{3}} \left(\left(\left(-\frac{39 n}{607}+\frac{26565}{18817}\right) \sqrt{31}+\mathrm{I} n -\frac{1199 \,\mathrm{I}}{607}\right) \sqrt{3}+\left(-\frac{117 \,\mathrm{I} n}{607}+\frac{79695 \,\mathrm{I}}{18817}\right) \sqrt{31}+n -\frac{1199}{607}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+5797 \left(\left(\left(-\frac{15 n}{17}-\frac{3777}{527}\right) \sqrt{31}+\mathrm{I} n -\frac{2731 \,\mathrm{I}}{17}\right) \sqrt{3}+\left(\frac{45 \,\mathrm{I} n}{17}+\frac{11331 \,\mathrm{I}}{527}\right) \sqrt{31}-n +\frac{2731}{17}\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+2670712 n +3255868\right) \left(\frac{47 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}+1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}-\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{37675044}\\+\\\frac{\left(-5797 \left(\left(\left(\frac{15 n}{17}+\frac{3777}{527}\right) \sqrt{31}+\mathrm{I} n -\frac{2731 \,\mathrm{I}}{17}\right) \sqrt{3}+\left(\frac{45 \,\mathrm{I} n}{17}+\frac{11331 \,\mathrm{I}}{527}\right) \sqrt{31}+n -\frac{2731}{17}\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+18817 \left(\left(\left(\frac{39 n}{607}-\frac{26565}{18817}\right) \sqrt{31}+\mathrm{I} n -\frac{1199 \,\mathrm{I}}{607}\right) \sqrt{3}+\left(-\frac{117 \,\mathrm{I} n}{607}+\frac{79695 \,\mathrm{I}}{18817}\right) \sqrt{31}-n +\frac{1199}{607}\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+2670712 n +3255868\right) \left(-\frac{47 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}+\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{37675044}\\+\\\frac{\left(10230 \left(\sqrt{3}\, \left(n +\frac{1259}{155}\right) \sqrt{31}+\frac{17 n}{15}-\frac{2731}{15}\right) 2^{\frac{2}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}-2418 \,2^{\frac{1}{3}} \left(\sqrt{3}\, \left(n -\frac{8855}{403}\right) \sqrt{31}-\frac{607 n}{39}+\frac{1199}{39}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+2670712 n +3255868\right) \left(\frac{2^{\frac{1}{3}} \left(9 \sqrt{31}\, \sqrt{3}-47\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{4356}-\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{18}+\frac{5}{9}\right)^{-n}}{37675044}\\-n & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 76 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 76 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{30}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{37}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{38}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{30}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{66}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\ \end{align*}\)