Av(1243, 2143, 2413, 3412)
Generating Function
\(\displaystyle -\frac{3 x^{5}-11 x^{4}+27 x^{3}-23 x^{2}+8 x -1}{\left(x^{2}-3 x +1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 212, 665, 2047, 6207, 18592, 55125, 162043, 472825, 1370816, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right)^{3} F \! \left(x \right)+3 x^{5}-11 x^{4}+27 x^{3}-23 x^{2}+8 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 66\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+9 a \! \left(n +1\right)-30 a \! \left(n +2\right)+45 a \! \left(n +3\right)-30 a \! \left(n +4\right)+9 a \! \left(n +5\right), \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 66\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+9 a \! \left(n +1\right)-30 a \! \left(n +2\right)+45 a \! \left(n +3\right)-30 a \! \left(n +4\right)+9 a \! \left(n +5\right), \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \frac{11 \left(\left(\left(-\frac{55}{2} n^{2}-\frac{167}{10} n -53\right) \sqrt{5}+\frac{123 n^{2}}{2}+\frac{75 n}{2}+\frac{593}{5}\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}+\frac{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n} \left(\left(-21 n -10\right) \sqrt{5}+5 n^{2}+50 n +32\right)}{5}\right) \left(\frac{25}{11}+\sqrt{5}\right)}{100}\)
This specification was found using the strategy pack "Pattern Point Placements" and has 40 rules.
Found on January 17, 2022.Finding the specification took 18 seconds.
Copy 40 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{11}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{11}\! \left(x \right) &= x\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{9} \left(x \right)^{2}\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{11}\! \left(x \right) F_{27}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{22}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{11}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{36}\! \left(x \right) &= 0\\
F_{37}\! \left(x \right) &= F_{11}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{11}\! \left(x \right) F_{34}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Row And Col Placements" and has 43 rules.
Found on January 17, 2022.Finding the specification took 10 seconds.
Copy 43 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{12}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{16}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{29}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{12}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{20}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{40}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{39}\! \left(x \right) &= 0\\
F_{40}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\
\end{align*}\)