Av(1243, 2143, 2413, 3214)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(x -1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right)}{\left(2 x^{2}-2 x +1\right) \left(x^{3}-3 x^{2}+4 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 212, 670, 2106, 6618, 20816, 65516, 206250, 649300, 2043998, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{2}-2 x +1\right) \left(x^{3}-3 x^{2}+4 x -1\right) F \! \left(x \right)+\left(x -1\right) \left(3 x^{3}-5 x^{2}+4 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +5\right) = 2 a \! \left(n \right)-8 a \! \left(n +1\right)+15 a \! \left(n +2\right)-13 a \! \left(n +3\right)+6 a \! \left(n +4\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \frac{5 \left(\left(\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{3^{\frac{5}{6}}}{3}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{5}{6}}}{5}-\frac{31 \,3^{\frac{1}{3}}}{5}\right) 2^{\frac{2}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{248}{5}-\frac{8 \left(\left(\mathrm{I} \,3^{\frac{2}{3}}-3^{\frac{1}{6}}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{1}{6}}}{4}+\frac{31 \,3^{\frac{2}{3}}}{12}\right) 2^{\frac{1}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{5}\right) \left(\left(\frac{53 \left(\left(\mathrm{I} \,3^{\frac{2}{3}}+\frac{97 \,3^{\frac{1}{6}}}{53}\right) \sqrt{31}-\frac{341 \,\mathrm{I} \,3^{\frac{1}{6}}}{53}-\frac{961 \,3^{\frac{2}{3}}}{159}\right) 2^{\frac{1}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{2232}-\frac{17 \left(\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{11 \,3^{\frac{5}{6}}}{51}\right) \sqrt{31}-\frac{155 \,\mathrm{I} \,3^{\frac{5}{6}}}{34}+\frac{31 \,3^{\frac{1}{3}}}{34}\right) 2^{\frac{2}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{558}-\frac{3 \,\mathrm{I} \sqrt{31}}{62}+\frac{7}{18}\right) \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(-\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}+\left(-\frac{11 \left(\left(\mathrm{I} \,3^{\frac{2}{3}}+\frac{64 \,3^{\frac{1}{6}}}{11}\right) \sqrt{31}-\frac{155 \,\mathrm{I} \,3^{\frac{1}{6}}}{11}-\frac{496 \,3^{\frac{2}{3}}}{33}\right) 2^{\frac{1}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{1116}-\frac{7 \,2^{\frac{2}{3}} \left(\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{10 \,3^{\frac{5}{6}}}{21}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{5}{6}}}{14}-\frac{62 \,3^{\frac{1}{3}}}{7}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{279}+\frac{3 \,\mathrm{I} \sqrt{31}}{62}+\frac{7}{18}\right) \left(-\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+1+\frac{\left(\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}-3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}\right)^{-n}+\frac{\left(\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right)^{-n}+\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)^{-n}\right) \left(\left(\mathrm{I} \,3^{\frac{2}{3}}-3^{\frac{1}{6}}\right) \sqrt{31}-\mathrm{I} \,3^{\frac{1}{6}}+\frac{3^{\frac{2}{3}}}{3}\right) 2^{\frac{1}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{288}-\frac{\left(\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{3^{\frac{5}{6}}}{3}\right) \sqrt{31}-\frac{7 \,3^{\frac{1}{3}}}{2}-\frac{7 \,\mathrm{I} \,3^{\frac{5}{6}}}{2}\right) 2^{\frac{2}{3}} \left(\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right)^{-n}+\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)^{-n}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{72}+\frac{4 \left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right)^{-n}}{9}+\frac{4 \left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)^{-n}}{9}+\left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}\right)}{1116}\)

This specification was found using the strategy pack "Point Placements" and has 71 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 71 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{30}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{37}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{38}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{52}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{30}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{52}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{68}\! \left(x \right)\\ \end{align*}\)