Av(1243, 2143, 2341, 3142, 4213)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{10}-x^{9}-2 x^{8}+6 x^{7}-3 x^{6}+2 x^{5}+2 x^{4}-13 x^{3}+14 x^{2}-6 x +1}{\left(2 x -1\right) \left(x^{2}+x -1\right) \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 53, 131, 301, 661, 1411, 2958, 6128, 12593, 25730, 52347, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(2 x -1\right) \left(x^{2}+x -1\right) \left(x -1\right)^{4} F \! \left(x \right)+x^{10}-x^{9}-2 x^{8}+6 x^{7}-3 x^{6}+2 x^{5}+2 x^{4}-13 x^{3}+14 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 131\)
\(\displaystyle a \! \left(7\right) = 301\)
\(\displaystyle a \! \left(8\right) = 661\)
\(\displaystyle a \! \left(9\right) = 1411\)
\(\displaystyle a \! \left(10\right) = 2958\)
\(\displaystyle a \! \left(n +3\right) = \frac{n^{3}}{6}-\frac{5 n^{2}}{2}-2 a \! \left(n \right)-a \! \left(n +1\right)+3 a \! \left(n +2\right)+\frac{25 n}{3}-5, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle \frac{n^{3}}{6}-\frac{3 n^{2}}{2}+\frac{\left(\left\{\begin{array}{cc}\frac{73}{8} & n =0 \\ \frac{17}{4} & n =1 \\ \frac{5}{2} & n =2 \\ 1 & n =3 \\ 0 & \text{otherwise} \end{array}\right.\right)}{2}+\frac{10 n}{3}-2+\frac{11 \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n} \sqrt{5}}{10}-\frac{11 \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n} \sqrt{5}}{10}-\frac{5 \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{2}-\frac{5 \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{2}+\frac{55 \,2^{n}}{16}\)

This specification was found using the strategy pack "Point Placements" and has 98 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 98 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{51}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{51}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{72}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{4}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{83}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{84}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{4}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{83}\! \left(x \right)\\ \end{align*}\)