Av(1243, 2143, 2341)
View Raw Data
Generating Function
x43x3+10x26x+1(x23x+1)(2x24x+1)
Counting Sequence
1, 1, 2, 6, 21, 75, 266, 935, 3263, 11326, 39155, 134955, 464094, 1593231, 5462447, ...
Implicit Equation for the Generating Function
(x23x+1)(2x24x+1)F(x)x4+3x310x2+6x1=0
Recurrence
a(0)=1
a(1)=1
a(2)=2
a(3)=6
a(4)=21
a(n+4)=2a(n)+10a(n+1)15a(n+2)+7a(n+3),n5
Explicit Closed Form
{1n=0(8520)(3252)n20+(8520)(32+52)n20+(152+25)(122)n20+(152+25)(1+22)n20otherwise

This specification was found using the strategy pack "Point Placements" and has 114 rules.

Found on January 18, 2022.

Finding the specification took 4 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 114 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F12(x)F4(x)F4(x)=F40(x)+F5(x)F5(x)=F1(x)+F6(x)F6(x)=F7(x)F7(x)=F12(x)F8(x)F8(x)=F13(x)+F9(x)F9(x)=F1(x)+F10(x)F10(x)=F11(x)F11(x)=F12(x)F9(x)F12(x)=xF13(x)=F14(x)+F26(x)F14(x)=F15(x)F15(x)=F12(x)F16(x)F16(x)=F17(x)+F18(x)F17(x)=F1(x)+F12(x)F18(x)=F14(x)+F19(x)F19(x)=F20(x)+F21(x)+F25(x)F20(x)=0F21(x)=F12(x)F22(x)F22(x)=F23(x)+F24(x)F23(x)=F12(x)F24(x)=F19(x)F25(x)=F12(x)F14(x)F26(x)=F20(x)+F27(x)+F39(x)F27(x)=F12(x)F28(x)F28(x)=F29(x)+F32(x)F29(x)=F10(x)+F30(x)F30(x)=F31(x)F31(x)=F10(x)F12(x)F32(x)=F26(x)+F33(x)F33(x)=2F20(x)+F34(x)+F38(x)F34(x)=F12(x)F35(x)F35(x)=F36(x)+F37(x)F36(x)=F30(x)F37(x)=F33(x)F38(x)=F12(x)F26(x)F39(x)=F12(x)F13(x)F40(x)=F41(x)+F60(x)F41(x)=F42(x)F42(x)=F12(x)F43(x)F43(x)=F44(x)+F47(x)F44(x)=F1(x)+F45(x)F45(x)=F46(x)F46(x)=F12(x)F44(x)F47(x)=F41(x)+F48(x)F48(x)=F20(x)+F49(x)+F59(x)F49(x)=F12(x)F50(x)F50(x)=F51(x)+F54(x)F51(x)=F12(x)+F52(x)F52(x)=F53(x)F53(x)=F12(x)F45(x)F54(x)=F55(x)+F57(x)F55(x)=F20(x)+F49(x)+F56(x)F56(x)=F12(x)F41(x)F57(x)=F58(x)F58(x)=F12(x)F48(x)F59(x)=F12(x)F47(x)F60(x)=F20(x)+F61(x)+F86(x)F61(x)=F12(x)F62(x)F62(x)=F63(x)+F68(x)F63(x)=F10(x)+F64(x)F64(x)=F20(x)+F65(x)+F66(x)F65(x)=F12(x)F63(x)F66(x)=F12(x)F67(x)F67(x)=F45(x)+F64(x)F68(x)=F69(x)+F72(x)F69(x)=F20(x)+F61(x)+F70(x)F70(x)=F12(x)F71(x)F71(x)=F41(x)+F69(x)F72(x)=F20(x)+F73(x)+F83(x)+F84(x)F73(x)=F12(x)F74(x)F74(x)=F75(x)+F78(x)F75(x)=F30(x)+F76(x)F76(x)=F77(x)F77(x)=F12(x)F64(x)F78(x)=F79(x)+F81(x)F79(x)=2F20(x)+F73(x)+F80(x)F80(x)=F12(x)F69(x)F81(x)=F82(x)F82(x)=F12(x)F72(x)F83(x)=F12(x)F68(x)F84(x)=F12(x)F85(x)F85(x)=F48(x)+F72(x)F86(x)=F12(x)F87(x)F87(x)=F71(x)+F88(x)F88(x)=F101(x)+F89(x)F89(x)=F20(x)+F49(x)+F90(x)F90(x)=F12(x)F91(x)F91(x)=F92(x)+F93(x)F92(x)=F41(x)+F55(x)F93(x)=F89(x)+F94(x)F94(x)=F100(x)+F20(x)+F95(x)+F96(x)F95(x)=0F96(x)=F12(x)F97(x)F97(x)=F98(x)+F99(x)F98(x)=F55(x)F99(x)=F94(x)F100(x)=F12(x)F89(x)F101(x)=F102(x)+F113(x)+F20(x)+F73(x)F102(x)=F103(x)F12(x)F103(x)=F104(x)+F105(x)F104(x)=F69(x)+F79(x)F105(x)=F101(x)+F106(x)F106(x)=2F20(x)+F107(x)+F108(x)+F112(x)F107(x)=0F108(x)=F109(x)F12(x)F109(x)=F110(x)+F111(x)F110(x)=F79(x)F111(x)=F106(x)F112(x)=F101(x)F12(x)F113(x)=F12(x)F88(x)