Av(1243, 2143, 2314, 3412)
View Raw Data
Generating Function
\(\displaystyle -\frac{11 x^{6}-31 x^{5}+49 x^{4}-48 x^{3}+27 x^{2}-8 x +1}{\left(2 x -1\right)^{2} \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 20, 61, 167, 421, 1003, 2302, 5156, 11364, 24774, 53587, 115221, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right)^{2} \left(x -1\right)^{5} F \! \left(x \right)+11 x^{6}-31 x^{5}+49 x^{4}-48 x^{3}+27 x^{2}-8 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 61\)
\(\displaystyle a \! \left(6\right) = 167\)
\(\displaystyle a \! \left(n +2\right) = \frac{n^{4}}{24}-\frac{3 n^{3}}{4}+\frac{71 n^{2}}{24}-4 a \! \left(n \right)+4 a \! \left(n +1\right)-\frac{9 n}{4}+2, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle 1+2^{-1+n} n +\frac{11 n^{2}}{24}-\frac{13 n}{12}-\frac{5 n^{3}}{12}+\frac{n^{4}}{24}\)

This specification was found using the strategy pack "Point Placements" and has 61 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 61 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{20}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{30}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{20}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{12}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{26}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{51}\! \left(x \right)+F_{52}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{51}\! \left(x \right) &= 0\\ F_{52}\! \left(x \right) &= F_{12}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{56}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{12}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{58}\! \left(x \right)\\ \end{align*}\)