Av(1243, 2143)
Generating Function
      
        \(\displaystyle -\frac{x}{2}+\frac{3}{2}-\frac{\sqrt{x^{2}-6 x +1}}{2}\)
      
      
    Counting Sequence
      
        1, 1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, 5293446, 27297738, 142078746, ...
      
      
    
        Implicit Equation for the Generating Function
        
      
      
      
        \(\displaystyle F \left(x
      \right)^{2}+\left(x -3\right) F \! \left(x \right)+2 = 0\)
      
      
      
    Recurrence
      
        
        
        \(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(n +2\right) = -\frac{\left(n -1\right) a \! \left(n \right)}{n +2}+\frac{3 \left(2 n +1\right) a \! \left(n +1\right)}{n +2}, \quad n \geq 2\)
      
    \(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(n +2\right) = -\frac{\left(n -1\right) a \! \left(n \right)}{n +2}+\frac{3 \left(2 n +1\right) a \! \left(n +1\right)}{n +2}, \quad n \geq 2\)
Heatmap
      To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point \((i, j)\) represents how many permutations have value \(j\) at index \(i\) (darker = more).
 
      This specification was found using the strategy pack "Point And Row Placements" and has 19 rules.
Found on April 25, 2021.Finding the specification took 108 seconds.
            
              Copy 19 equations to clipboard:
            
            
            
            
            
            
            
            
            
            
        
              \(\begin{align*}
                
                F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
                
                F_{1}\! \left(x \right) &= 1\\
                
                F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{7}\! \left(x \right)\\
                
                F_{3}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{8}\! \left(x \right)\\
                
                F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)\\
                
                F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
                
                F_{6}\! \left(x \right) &= F_{4} \left(x \right)^{2} F_{7}\! \left(x \right)\\
                
                F_{7}\! \left(x \right) &= x\\
                
                F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\
                
                F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{7}\! \left(x \right)\\
                
                F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{17}\! \left(x \right)+F_{3}\! \left(x \right)\\
                
                F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
                
                F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\
                
                F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{15}\! \left(x \right)\\
                
                F_{14}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
                
                F_{16}\! \left(x \right) &= F_{10} \left(x \right)^{2} F_{7}\! \left(x \right)\\
                
                F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
                
                F_{18}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\
                
                \end{align*}\)
            
          This specification was found using the strategy pack "Point Placements Req Corrob" and has 24 rules.
Found on April 25, 2021.Finding the specification took 113 seconds.
            
              Copy 24 equations to clipboard:
            
            
            
            
            
            
            
            
            
            
        
              \(\begin{align*}
                
                F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
                
                F_{1}\! \left(x \right) &= 1\\
                
                F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
                
                F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
                
                F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\
                
                F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
                
                F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
                
                F_{7}\! \left(x \right) &= F_{5} \left(x \right)^{2} F_{8}\! \left(x \right)\\
                
                F_{8}\! \left(x \right) &= x\\
                
                F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
                
                F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\
                
                F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{22}\! \left(x \right)\\
                
                F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{4}\! \left(x \right)\\
                
                F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{16}\! \left(x \right)\\
                
                F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{5}\! \left(x \right)\\
                
                F_{15}\! \left(x \right) &= F_{6}\! \left(x \right)\\
                
                F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
                
                F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\
                
                F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\
                
                F_{19}\! \left(x \right) &= F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\
                
                F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
                
                F_{21}\! \left(x \right) &= F_{11} \left(x \right)^{2} F_{8}\! \left(x \right)\\
                
                F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
                
                F_{23}\! \left(x \right) &= F_{5} \left(x \right)^{2} F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\
                
                \end{align*}\)
            
          This specification was found using the strategy pack "Point And Row Placements Req Corrob" and has 24 rules.
Found on April 25, 2021.Finding the specification took 122 seconds.
            
              Copy 24 equations to clipboard:
            
            
            
            
            
            
            
            
            
            
        
              \(\begin{align*}
                
                F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
                
                F_{1}\! \left(x \right) &= 1\\
                
                F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
                
                F_{3}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{4}\! \left(x \right)+F_{5}\! \left(x \right)\\
                
                F_{4}\! \left(x \right) &= 0\\
                
                F_{5}\! \left(x \right) &= F_{6}\! \left(x \right) F_{7}\! \left(x \right)\\
                
                F_{6}\! \left(x \right) &= x\\
                
                F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\
                
                F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\
                
                F_{9}\! \left(x \right) &= F_{7} \left(x \right)^{2} F_{6}\! \left(x \right)\\
                
                F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{6}\! \left(x \right)\\
                
                F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
                
                F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{6}\! \left(x \right)\\
                
                F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{16}\! \left(x \right)+F_{22}\! \left(x \right)\\
                
                F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{7}\! \left(x \right)\\
                
                F_{15}\! \left(x \right) &= F_{12}\! \left(x \right)\\
                
                F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
                
                F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{6}\! \left(x \right)\\
                
                F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\
                
                F_{19}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\
                
                F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
                
                F_{21}\! \left(x \right) &= F_{13} \left(x \right)^{2} F_{6}\! \left(x \right)\\
                
                F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
                
                F_{23}\! \left(x \right) &= F_{13}\! \left(x \right) F_{6}\! \left(x \right) F_{7}\! \left(x \right)\\
                
                \end{align*}\)
            
          This specification was found using the strategy pack "Point And Col Placements Req Corrob" and has 20 rules.
Found on April 25, 2021.Finding the specification took 117 seconds.
            
              Copy 20 equations to clipboard:
            
            
            
            
            
            
            
            
            
            
        
              \(\begin{align*}
                
                F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
                
                F_{1}\! \left(x \right) &= 1\\
                
                F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{3}\! \left(x \right) &= x\\
                
                F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{8}\! \left(x \right)\\
                
                F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
                
                F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
                
                F_{7}\! \left(x \right) &= F_{5} \left(x \right)^{2} F_{3}\! \left(x \right)\\
                
                F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\
                
                F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{3}\! \left(x \right)\\
                
                F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\
                
                F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{4}\! \left(x \right)\\
                
                F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
                
                F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{3}\! \left(x \right) F_{5}\! \left(x \right)\\
                
                F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)\\
                
                F_{15}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
                
                F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
                
                F_{17}\! \left(x \right) &= F_{10} \left(x \right)^{2} F_{3}\! \left(x \right)\\
                
                F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
                
                F_{19}\! \left(x \right) &= F_{5} \left(x \right)^{2} F_{10}\! \left(x \right) F_{3}\! \left(x \right)\\
                
                \end{align*}\)
            
          This specification was found using the strategy pack "Point Placements" and has 24 rules.
Found on April 25, 2021.Finding the specification took 145 seconds.
            
              Copy 24 equations to clipboard:
            
            
            
            
            
            
            
            
            
            
        
              \(\begin{align*}
                
                F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
                
                F_{1}\! \left(x \right) &= 1\\
                
                F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
                
                F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
                
                F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\
                
                F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
                
                F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
                
                F_{7}\! \left(x \right) &= F_{5} \left(x \right)^{2} F_{8}\! \left(x \right)\\
                
                F_{8}\! \left(x \right) &= x\\
                
                F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
                
                F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\
                
                F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{15}\! \left(x \right)\\
                
                F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{4}\! \left(x \right)\\
                
                F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
                
                F_{14}\! \left(x \right) &= F_{12}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\
                
                F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
                
                F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\
                
                F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{22}\! \left(x \right)\\
                
                F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{5}\! \left(x \right)\\
                
                F_{19}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{20}\! \left(x \right)\\
                
                F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
                
                F_{21}\! \left(x \right) &= F_{19}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\
                
                F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
                
                F_{23}\! \left(x \right) &= F_{11}\! \left(x \right) F_{19}\! \left(x \right) F_{8}\! \left(x \right)\\
                
                \end{align*}\)