Av(1243, 2134, 2413)
Generating Function
\(\displaystyle \frac{\left(x^{2}-3 x +1\right)^{2}}{x^{5}+4 x^{4}-14 x^{3}+16 x^{2}-7 x +1}\)
Counting Sequence
1, 1, 2, 6, 21, 74, 257, 883, 3015, 10258, 34826, 118075, 399978, 1354163, 4582981, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{5}+4 x^{4}-14 x^{3}+16 x^{2}-7 x +1\right) F \! \left(x \right)-\left(x^{2}-3 x +1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(n +5\right) = -a \! \left(n \right)-4 a \! \left(n +1\right)+14 a \! \left(n +2\right)-16 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(n +5\right) = -a \! \left(n \right)-4 a \! \left(n +1\right)+14 a \! \left(n +2\right)-16 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle -\frac{8390 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =1\right)^{-n +3}}{32411}-\frac{8390 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =2\right)^{-n +3}}{32411}-\frac{8390 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =3\right)^{-n +3}}{32411}-\frac{8390 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =4\right)^{-n +3}}{32411}-\frac{8390 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =5\right)^{-n +3}}{32411}-\frac{36889 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =1\right)^{-n +2}}{32411}-\frac{36889 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =2\right)^{-n +2}}{32411}-\frac{36889 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =3\right)^{-n +2}}{32411}-\frac{36889 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =4\right)^{-n +2}}{32411}-\frac{36889 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =5\right)^{-n +2}}{32411}+\frac{103870 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =1\right)^{-n +1}}{32411}+\frac{103870 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =2\right)^{-n +1}}{32411}+\frac{103870 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =3\right)^{-n +1}}{32411}+\frac{103870 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =4\right)^{-n +1}}{32411}+\frac{103870 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =5\right)^{-n +1}}{32411}+\frac{17241 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =1\right)^{-n -1}}{32411}+\frac{17241 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =2\right)^{-n -1}}{32411}+\frac{17241 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =3\right)^{-n -1}}{32411}+\frac{17241 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =4\right)^{-n -1}}{32411}+\frac{17241 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =5\right)^{-n -1}}{32411}-\frac{79776 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =1\right)^{-n}}{32411}-\frac{79776 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =2\right)^{-n}}{32411}-\frac{79776 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =3\right)^{-n}}{32411}-\frac{79776 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =4\right)^{-n}}{32411}-\frac{79776 \mathit{RootOf} \left(Z^{5}+4 Z^{4}-14 Z^{3}+16 Z^{2}-7 Z +1, \mathit{index} =5\right)^{-n}}{32411}\)
This specification was found using the strategy pack "Point Placements" and has 78 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 78 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{29}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{12}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{12}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{29}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{12}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{51}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{12}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{12}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{12}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{51}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{12}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{69}\! \left(x \right)+F_{70}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{69}\! \left(x \right) &= 0\\
F_{70}\! \left(x \right) &= F_{12}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{69}\! \left(x \right)+F_{70}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{12}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{12}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{12}\! \left(x \right) F_{67}\! \left(x \right)\\
\end{align*}\)