Av(1243, 1432, 2413, 2431)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(-x^{2}+4 x -2\right) \sqrt{1-4 x}+3 x^{2}-6 x +2}{2 x \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 67, 224, 753, 2558, 8796, 30608, 107670, 382408, 1369684, 4942252, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{4} F \left(x \right)^{2}-\left(3 x^{2}-6 x +2\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{4}-6 x^{3}+13 x^{2}-9 x +2 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +4\right) = -\frac{\left(2 n +1\right) a \! \left(n \right)}{n +5}+\frac{\left(40+21 n \right) a \! \left(1+n \right)}{2 n +10}-\frac{\left(29 n +77\right) a \! \left(n +2\right)}{2 \left(n +5\right)}+\frac{\left(7 n +26\right) a \! \left(n +3\right)}{n +5}+\frac{2}{n +5}, \quad n \geq 5\)

This specification was found using the strategy pack "Point Placements" and has 23 rules.

Found on July 23, 2021.

Finding the specification took 3 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 23 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{10}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{5}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{10}\! \left(x \right) &= x\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{20}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{10}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{10}\! \left(x \right) F_{20}\! \left(x \right)\\ \end{align*}\)