Av(1243, 1432, 2341, 3241)
Generating Function
\(\displaystyle \frac{x^{6}-3 x^{4}+2 x^{3}-5 x^{2}+4 x -1}{\left(x^{3}-x^{2}+3 x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 20, 62, 180, 508, 1418, 3940, 10926, 30274, 83856, 232242, 643168, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{3}-x^{2}+3 x -1\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{6}-3 x^{4}+2 x^{3}-5 x^{2}+4 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 62\)
\(\displaystyle a \! \left(6\right) = 180\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-a \! \left(n +1\right)+3 a \! \left(n +2\right)+2 n +2, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 62\)
\(\displaystyle a \! \left(6\right) = 180\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-a \! \left(n +1\right)+3 a \! \left(n +2\right)+2 n +2, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ \frac{\left(\left(\left(-76 \,\mathrm{I}-92 \sqrt{19}\right) \sqrt{3}-276 \,\mathrm{I} \sqrt{19}-76\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}-4864+\left(\left(247 \,\mathrm{I}+5 \sqrt{19}\right) \sqrt{3}-15 \,\mathrm{I} \sqrt{19}-247\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(\mathrm{I}+3 \sqrt{19}\right) \sqrt{3}-9 \,\mathrm{I} \sqrt{19}-1\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}-\frac{\mathrm{I} \sqrt{3}\, \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{1}{3}\right)^{-n}}{7296}\\+\\\frac{\left(\left(\left(-247 \,\mathrm{I}+5 \sqrt{19}\right) \sqrt{3}+15 \,\mathrm{I} \sqrt{19}-247\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}-4864+\left(\left(76 \,\mathrm{I}-92 \sqrt{19}\right) \sqrt{3}+276 \,\mathrm{I} \sqrt{19}-76\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(-\mathrm{I}+3 \sqrt{19}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{19}-1\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}+\frac{\mathrm{I} \sqrt{3}\, \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{1}{3}\right)^{-n}}{7296}\\+\\\frac{\left(\left(-10 \sqrt{19}\, \sqrt{3}+494\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}+184 \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{19}\, \sqrt{3}+152 \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}-4864\right) \left(\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}+\frac{1}{3}+\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}}{192}-\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{19}\, \sqrt{3}}{64}\right)^{-n}}{7296}\\-n & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 106 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 106 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{38}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{12}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{42}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{12}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{22}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{12}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= x^{2}\\
F_{52}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{12}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{57}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{12}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{60}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{12}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{57}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{12}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{66}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{12}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{12}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{12}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{77}\! \left(x \right) &= 3 F_{18}\! \left(x \right)+F_{78}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{12}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{12}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{12}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{85}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{12}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= x^{2}\\
F_{90}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{105}\! \left(x \right)+F_{18}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{12}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{12}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{12}\! \left(x \right) F_{83}\! \left(x \right)\\
\end{align*}\)