Av(1243, 1432, 2341, 3214, 4213)
Generating Function
\(\displaystyle \frac{\left(x +1\right) \left(x^{9}+x^{8}+2 x^{7}+x^{6}-15 x^{5}+10 x^{4}-6 x^{3}+7 x^{2}-4 x +1\right)}{\left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 46, 86, 152, 264, 456, 796, 1406, 2510, 4522, 8202, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+\left(x +1\right) \left(x^{9}+x^{8}+2 x^{7}+x^{6}-15 x^{5}+10 x^{4}-6 x^{3}+7 x^{2}-4 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 46\)
\(\displaystyle a \! \left(6\right) = 86\)
\(\displaystyle a \! \left(7\right) = 152\)
\(\displaystyle a \! \left(8\right) = 264\)
\(\displaystyle a \! \left(9\right) = 456\)
\(\displaystyle a \! \left(10\right) = 796\)
\(\displaystyle a \! \left(n +3\right) = -2 n^{2}+a \! \left(n \right)+a \! \left(n +1\right)+a \! \left(n +2\right)-4 n +50, \quad n \geq 11\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 46\)
\(\displaystyle a \! \left(6\right) = 86\)
\(\displaystyle a \! \left(7\right) = 152\)
\(\displaystyle a \! \left(8\right) = 264\)
\(\displaystyle a \! \left(9\right) = 456\)
\(\displaystyle a \! \left(10\right) = 796\)
\(\displaystyle a \! \left(n +3\right) = -2 n^{2}+a \! \left(n \right)+a \! \left(n +1\right)+a \! \left(n +2\right)-4 n +50, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ 2 & n =2 \\ 6 & n =3 \\ 19 & n =4 \\ \frac{\left(\left(\left(165 \,\mathrm{I}-23 \sqrt{11}\right) \sqrt{3}-69 \,\mathrm{I} \sqrt{11}+165\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+264+\left(\left(-132 \,\mathrm{I}-26 \sqrt{11}\right) \sqrt{3}+78 \,\mathrm{I} \sqrt{11}+132\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}-9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}-\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{264}\\+\\\frac{\left(\left(\left(132 \,\mathrm{I}-26 \sqrt{11}\right) \sqrt{3}-78 \,\mathrm{I} \sqrt{11}+132\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+264+\left(\left(-165 \,\mathrm{I}-23 \sqrt{11}\right) \sqrt{3}+69 \,\mathrm{I} \sqrt{11}+165\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(-17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}+\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{264}\\+\\\frac{\left(\left(52 \sqrt{11}\, \sqrt{3}-264\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+46 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{11}\, \sqrt{3}-330 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+264\right) \left(\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}-\frac{1}{3}+\frac{17 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{11}\, \sqrt{3}}{4}\right)^{-n}}{264}\\+n^{2}+2 n -23 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 91 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 91 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{42}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{46}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{40}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{31}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{54}\! \left(x \right)\\
\end{align*}\)