Av(1243, 1432, 2341, 3214, 4123)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{11}-12 x^{10}+4 x^{9}+16 x^{8}+5 x^{7}+24 x^{6}+x^{5}-4 x^{4}-x^{3}-x^{2}+2 x -1}{\left(x -1\right) \left(x^{2}+1\right) \left(x^{3}-x^{2}-2 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 44, 75, 148, 312, 679, 1504, 3359, 7527, 16891, 37932, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(x^{2}+1\right) \left(x^{3}-x^{2}-2 x +1\right) F \! \left(x \right)+x^{11}-12 x^{10}+4 x^{9}+16 x^{8}+5 x^{7}+24 x^{6}+x^{5}-4 x^{4}-x^{3}-x^{2}+2 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 44\)
\(\displaystyle a \! \left(6\right) = 75\)
\(\displaystyle a \! \left(7\right) = 148\)
\(\displaystyle a \! \left(8\right) = 312\)
\(\displaystyle a \! \left(9\right) = 679\)
\(\displaystyle a \! \left(10\right) = 1504\)
\(\displaystyle a \! \left(11\right) = 3359\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)-a \! \left(n +1\right)-2 a \! \left(n +4\right)+a \! \left(n +5\right)+34, \quad n \geq 12\)
Explicit Closed Form
\(\displaystyle \frac{\left(\left(-70 \,\mathrm{I} \sqrt{3}+350\right) \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}-40 \,\mathrm{I} \sqrt{3}\, \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}+10 \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}+3136\right) \left(\frac{\left(\mathrm{I} \sqrt{3}+5\right) \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{168}-\frac{\mathrm{I} \sqrt{3}\, \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{1}{3}\right)^{-n}}{15288}+\frac{\left(\left(-140 \,\mathrm{I} \sqrt{3}-280\right) \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}+25 \,\mathrm{I} \sqrt{3}\, \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}+55 \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}+3136\right) \left(\frac{\left(\mathrm{I} \sqrt{3}-2\right) \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{84}+\frac{\mathrm{I} \sqrt{3}\, \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{1}{3}\right)^{-n}}{15288}+\frac{\left(\left(210 \,\mathrm{I} \sqrt{3}-70\right) \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}+15 \,\mathrm{I} \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}} \sqrt{3}-65 \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}+3136\right) \left(\frac{\left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{1}{3}-\frac{\left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{168}-\frac{\mathrm{I} \sqrt{3}\, \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{56}\right)^{-n}}{15288}+\frac{5 \cos \! \left(\frac{n \pi}{2}\right)}{13}+\frac{\sin \! \left(\frac{n \pi}{2}\right)}{13}-\left(\left\{\begin{array}{cc}17 & n =0\text{ or } n =1\text{ or } n =2 \\ 16 & n =3 \\ 10 & n =4 \\ -1 & n =5 \\ 0 & \text{otherwise} \end{array}\right.\right)+17\)

This specification was found using the strategy pack "Point Placements" and has 112 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 112 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{18}\! \left(x \right) &= 0\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{35}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{46}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= x^{2}\\ F_{56}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{62}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{66}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= x^{2}\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{107}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{18}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{18}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ \end{align*}\)