Av(1243, 1432, 2341, 2413, 3142)
Generating Function
\(\displaystyle \frac{2 x^{4}+2 x^{2}-3 x +1}{\left(x -1\right) \left(x^{3}-x^{2}+3 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 154, 428, 1187, 3289, 9110, 25230, 69871, 193495, 535846, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{3}-x^{2}+3 x -1\right) F \! \left(x \right)-2 x^{4}-2 x^{2}+3 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-a \! \left(n +1\right)+3 a \! \left(n +2\right)+2, \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-a \! \left(n +1\right)+3 a \! \left(n +2\right)+2, \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{3 \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}} \left(\left(\left(\frac{65 \sqrt{19}}{171}+\mathrm{I}\right) \sqrt{3}-\frac{65 \,\mathrm{I} \sqrt{19}}{57}-1\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-8 \,\mathrm{I}-\frac{56 \sqrt{19}}{171}\right) \sqrt{3}-\frac{56 \,\mathrm{I} \sqrt{19}}{57}-8\right) \left(\frac{\left(\left(\mathrm{I}+3 \sqrt{19}\right) \sqrt{3}-9 \,\mathrm{I} \sqrt{19}-1\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}-\frac{\mathrm{I} \sqrt{3}\, \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{1}{3}\right)^{-n}}{256}\\-\\\frac{3 \left(\left(\left(-\frac{65 \sqrt{19}}{171}+\mathrm{I}\right) \sqrt{3}-\frac{65 \,\mathrm{I} \sqrt{19}}{57}+1\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-8 \,\mathrm{I}+\frac{56 \sqrt{19}}{171}\right) \sqrt{3}-\frac{56 \,\mathrm{I} \sqrt{19}}{57}+8\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}} \left(\frac{\left(\left(-\mathrm{I}+3 \sqrt{19}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{19}-1\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}+\frac{\mathrm{I} \sqrt{3}\, \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{1}{3}\right)^{-n}}{256}\\-1+\\\frac{\left(112 \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{19}\, \sqrt{3}-130 \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{19}\, \sqrt{3}+2736 \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}+342 \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}+\frac{1}{3}+\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}}{192}-\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{19}\, \sqrt{3}}{64}\right)^{-n}}{14592} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 78 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 78 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{33}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{12}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{42}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{12}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{49}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{12}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{12}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{56}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{53}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{12}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{12}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{12}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{12}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{75}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{76}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{12}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{12}\! \left(x \right) F_{72}\! \left(x \right)\\
\end{align*}\)