Av(1243, 1432, 2314, 3241, 4123)
Generating Function
\(\displaystyle -\frac{x^{10}-x^{9}-3 x^{8}-x^{7}+9 x^{6}+5 x^{5}-4 x^{4}-x^{3}-3 x^{2}+3 x -1}{\left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 46, 91, 170, 311, 563, 1018, 1845, 3354, 6116, 11181, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}+x^{2}+x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+x^{10}-x^{9}-3 x^{8}-x^{7}+9 x^{6}+5 x^{5}-4 x^{4}-x^{3}-3 x^{2}+3 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 46\)
\(\displaystyle a \! \left(6\right) = 91\)
\(\displaystyle a \! \left(7\right) = 170\)
\(\displaystyle a \! \left(8\right) = 311\)
\(\displaystyle a \! \left(9\right) = 563\)
\(\displaystyle a \! \left(10\right) = 1018\)
\(\displaystyle a \! \left(n +3\right) = -2 n^{2}+a \! \left(n \right)+a \! \left(n +1\right)+a \! \left(n +2\right)+9 n +9, \quad n \geq 11\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 46\)
\(\displaystyle a \! \left(6\right) = 91\)
\(\displaystyle a \! \left(7\right) = 170\)
\(\displaystyle a \! \left(8\right) = 311\)
\(\displaystyle a \! \left(9\right) = 563\)
\(\displaystyle a \! \left(10\right) = 1018\)
\(\displaystyle a \! \left(n +3\right) = -2 n^{2}+a \! \left(n \right)+a \! \left(n +1\right)+a \! \left(n +2\right)+9 n +9, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =1 \\ 2 & n =2 \\ 6 & n =3 \\ 19 & n =4 \\ \frac{\left(\left(\left(110 \,\mathrm{I}+16 \sqrt{11}\right) \sqrt{3}-48 \,\mathrm{I} \sqrt{11}-110\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+616+\left(\left(-29 \sqrt{11}+143 \,\mathrm{I}\right) \sqrt{3}-87 \,\mathrm{I} \sqrt{11}+143\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}-9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}-\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{528}\\+\\\frac{\left(\left(\left(-110 \,\mathrm{I}+16 \sqrt{11}\right) \sqrt{3}+48 \,\mathrm{I} \sqrt{11}-110\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+616+\left(\left(-29 \sqrt{11}-143 \,\mathrm{I}\right) \sqrt{3}+87 \,\mathrm{I} \sqrt{11}+143\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(-17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}+\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{528}\\+\\\frac{\left(\left(-32 \sqrt{11}\, \sqrt{3}+220\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+58 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{11}\, \sqrt{3}-286 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+616\right) \left(\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}-\frac{1}{3}+\frac{17 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{11}\, \sqrt{3}}{4}\right)^{-n}}{528}\\+n^{2}-\frac{9 n}{2}-\frac{5}{2} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 137 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 137 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{35}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{59}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= x^{2}\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{65}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{18}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{7}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{85}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= x^{2}\\
F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{104}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{109}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{113}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{110}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{118}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{122}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{119}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{128}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{125}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{133}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{18}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{136}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{134}\! \left(x \right)\\
\end{align*}\)