Av(1243, 1432, 2143, 3412)
Generating Function
\(\displaystyle -\frac{2 x^{4}+x^{3}+4 x^{2}-4 x +1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 62, 182, 516, 1430, 3902, 10532, 28206, 75110, 199172, 526502, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{2}-3 x +1\right) F \! \left(x \right)+2 x^{4}+x^{3}+4 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right), \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \left(3-\sqrt{5}\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}+\left(3+\sqrt{5}\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}-2^{n} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 32 rules.
Found on July 23, 2021.Finding the specification took 8 seconds.
Copy 32 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{14}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= x\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{17}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{23}\! \left(x \right) &= 0\\
F_{24}\! \left(x \right) &= F_{17}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{17}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{29}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{17}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{17}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{28}\! \left(x \right)\\
\end{align*}\)