Av(1243, 1432, 2143, 2431, 4132)
Generating Function
\(\displaystyle \frac{\left(-x^{3}+4 x^{2}-3 x +1\right) \sqrt{1-4 x}+3 x^{3}-4 x^{2}+3 x -1}{2 x \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 59, 183, 578, 1873, 6224, 21132, 73013, 255843, 906834, 3244988, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{6} F \left(x
\right)^{2}-\left(3 x^{3}-4 x^{2}+3 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+x^{6}-6 x^{5}+18 x^{4}-23 x^{3}+16 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 59\)
\(\displaystyle a \! \left(6\right) = 183\)
\(\displaystyle a \! \left(n +5\right) = \frac{2 \left(1+2 n \right) a \! \left(n \right)}{n +6}-\frac{3 \left(12+7 n \right) a \! \left(n +1\right)}{n +6}+\frac{3 \left(26+11 n \right) a \! \left(n +2\right)}{n +6}-\frac{\left(82+23 n \right) a \! \left(n +3\right)}{n +6}+\frac{2 \left(19+4 n \right) a \! \left(n +4\right)}{n +6}+\frac{2 n +2}{n +6}, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 59\)
\(\displaystyle a \! \left(6\right) = 183\)
\(\displaystyle a \! \left(n +5\right) = \frac{2 \left(1+2 n \right) a \! \left(n \right)}{n +6}-\frac{3 \left(12+7 n \right) a \! \left(n +1\right)}{n +6}+\frac{3 \left(26+11 n \right) a \! \left(n +2\right)}{n +6}-\frac{\left(82+23 n \right) a \! \left(n +3\right)}{n +6}+\frac{2 \left(19+4 n \right) a \! \left(n +4\right)}{n +6}+\frac{2 n +2}{n +6}, \quad n \geq 7\)
This specification was found using the strategy pack "Point Placements" and has 17 rules.
Found on July 23, 2021.Finding the specification took 3 seconds.
Copy 17 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{12}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{9} \left(x \right)^{3}\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{9} \left(x \right)^{2} F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15} \left(x \right)^{2} F_{9} \left(x \right)^{2} F_{12}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right)\\
\end{align*}\)