Av(1243, 1432, 2143, 2341)
Generating Function
\(\displaystyle -\frac{\left(x -1\right) \left(x^{3}+x^{2}+2 x -1\right)}{x^{3}-3 x^{2}+4 x -1}\)
Counting Sequence
1, 1, 2, 6, 20, 64, 202, 636, 2002, 6302, 19838, 62448, 196580, 618814, 1947964, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-3 x^{2}+4 x -1\right) F \! \left(x \right)+\left(x -1\right) \left(x^{3}+x^{2}+2 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-3 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-3 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ \frac{\left(-39 \left(\left(\mathrm{I} \,3^{\frac{1}{3}}-\frac{3^{\frac{5}{6}}}{3}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{5}{6}}}{13}+\frac{31 \,3^{\frac{1}{3}}}{13}\right) 2^{\frac{2}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+1488-12 \left(\left(\mathrm{I} \,3^{\frac{2}{3}}+3^{\frac{1}{6}}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{1}{6}}}{2}-\frac{31 \,3^{\frac{2}{3}}}{6}\right) 2^{\frac{1}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(-\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}}{1116}\\+\\\frac{\left(39 \,2^{\frac{2}{3}} \left(\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{3^{\frac{5}{6}}}{3}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{5}{6}}}{13}-\frac{31 \,3^{\frac{1}{3}}}{13}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+1488+12 \,2^{\frac{1}{3}} \left(\left(\mathrm{I} \,3^{\frac{2}{3}}-3^{\frac{1}{6}}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{1}{6}}}{2}+\frac{31 \,3^{\frac{2}{3}}}{6}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}}{1116}\\-\\\frac{13 \left(2^{\frac{2}{3}} \left(\sqrt{31}\, 3^{\frac{5}{6}}-\frac{93 \,3^{\frac{1}{3}}}{13}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}-\frac{744}{13}-\frac{12 \left(3^{\frac{1}{6}} \sqrt{31}-\frac{31 \,3^{\frac{2}{3}}}{6}\right) 2^{\frac{1}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{13}\right) \left(-\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+1+\frac{\left(\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}-3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}\right)^{-n}}{558} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 84 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 84 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{33}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= x^{2}\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{33}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{12}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{46}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{12}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{50}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{12}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{22}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{12}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{46}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{12}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{60}\! \left(x \right)+F_{71}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{12}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{12}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{66}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{60}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{12}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{12}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{60}\! \left(x \right)+F_{67}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{12}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{12}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{12}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{33}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{60}\! \left(x \right)+F_{81}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{12}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{12}\! \left(x \right) F_{77}\! \left(x \right)\\
\end{align*}\)