Av(1243, 1432, 2143, 2314, 2413)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(2 x -1\right) \left(x -1\right)}{x^{4}+2 x^{3}-4 x^{2}+4 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 166, 480, 1389, 4025, 11670, 33838, 98111, 284457, 824730, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{4}+2 x^{3}-4 x^{2}+4 x -1\right) F \! \left(x \right)+\left(2 x -1\right) \left(x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = a \! \left(n \right)+2 a \! \left(n +1\right)-4 a \! \left(n +2\right)+4 a \! \left(n +3\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \frac{7 \left(\left(\left(\left(\mathrm{I} \sqrt{3}\, \sqrt{163}-\frac{49 \,\mathrm{I}}{3}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{200 \,\mathrm{I} \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}-\frac{12700 \,\mathrm{I}}{21}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}-\frac{6000 \,\mathrm{I} \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{3}}{7}+\left(-210 \,\mathrm{I} \sqrt{3}+\frac{270 \,\mathrm{I} \sqrt{163}}{7}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{264000 \,\mathrm{I} \sqrt{3}}{7}\right) \sqrt{\left(-6 \sqrt{163}\, \sqrt{3}+98\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+40 \sqrt{3}\, \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+400 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-8800}+\frac{176040000}{7}+\left(\left(-\frac{6520 \sqrt{3}}{21}+\frac{440 \sqrt{163}}{7}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(-\frac{32600 \sqrt{3}}{21}+\frac{200 \sqrt{163}}{7}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{326000 \sqrt{3}}{21}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}\right) \left(\left(\left(\left(\left(\frac{9291 \,\mathrm{I}}{20}-\frac{577 \,\mathrm{I} \sqrt{3}\, \sqrt{163}}{20}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+14670 \,\mathrm{I}+\left(-2 \,\mathrm{I} \sqrt{3}\, \sqrt{163}+1956 \,\mathrm{I}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(6846 \,\mathrm{I} \sqrt{3}-1386 \,\mathrm{I} \sqrt{163}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(34230 \,\mathrm{I} \sqrt{3}-630 \,\mathrm{I} \sqrt{163}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+684600 \,\mathrm{I} \sqrt{3}\right) \sqrt{\left(-6 \sqrt{163}\, \sqrt{3}+98\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+40 \sqrt{3}\, \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+400 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-8800}+\left(\left(-7172 \sqrt{3}+1152 \sqrt{163}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(-21190 \sqrt{3}-810 \sqrt{163}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-130400 \sqrt{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(-138600 \sqrt{163}\, \sqrt{3}+4987800\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-40860 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}+205380 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+363816000\right) \left(-\frac{\mathrm{I} \sqrt{120 \sqrt{\left(120 \,2^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}+\left(-18 \sqrt{163}\, \sqrt{3}+294\right) 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}+1200 \,2^{\frac{1}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}-26400}}{120}+\frac{\left(49 \,2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}+200 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+2200\right) \sqrt{\left(120 \,2^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}}{648000}-\frac{\sqrt{6520 \,2^{\frac{1}{3}} \left(\sqrt{163}\, \sqrt{3}-53\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+3064400+\left(3586 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-36838 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}\, 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}{72000}-\frac{1}{2}\right)^{-n}+\left(\left(\left(\left(\left(\mathrm{I} \sqrt{3}+\frac{713}{6}\right) \sqrt{163}+\frac{2771 \,\mathrm{I}}{3}-\frac{1793 \sqrt{3}}{6}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(\left(-\frac{141 \,\mathrm{I} \sqrt{3}}{10}+\frac{47}{3}\right) \sqrt{163}+\frac{7009 \,\mathrm{I}}{30}-\frac{652 \sqrt{3}}{3}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{18745 \,\mathrm{I}}{3}-\frac{55 \sqrt{163}}{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(\left(315 \,\mathrm{I}+12675 \sqrt{3}\right) \sqrt{163}+31785 \,\mathrm{I} \sqrt{3}-256725\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(\left(-\frac{3015 \,\mathrm{I}}{2}-\frac{1491 \sqrt{3}}{2}\right) \sqrt{163}-\frac{60147}{2}+\frac{17115 \,\mathrm{I} \sqrt{3}}{2}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+48900 \sqrt{3}\, \left(\mathrm{I}+\frac{47 \sqrt{163}}{163}\right)\right) \sqrt{\left(-6 \sqrt{163}\, \sqrt{3}+98\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+40 \sqrt{3}\, \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+400 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-8800}+\left(\left(\left(-1225-\frac{595 \,\mathrm{I} \sqrt{3}}{3}\right) \sqrt{163}+\frac{101875 \sqrt{3}}{3}+10595 \,\mathrm{I}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(\left(-1228+\frac{331 \,\mathrm{I} \sqrt{3}}{3}\right) \sqrt{163}+\frac{15974 \sqrt{3}}{3}-1141 \,\mathrm{I}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{1400 \sqrt{3}\, \left(\mathrm{I} \sqrt{163}+\frac{7661}{7}\right)}{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(\left(207900 \,\mathrm{I}+69300 \sqrt{3}\right) \sqrt{163}-2493900 \,\mathrm{I} \sqrt{3}-2493900\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+363816000+\left(\left(-61290 \,\mathrm{I}+20430 \sqrt{3}\right) \sqrt{163}+102690 \,\mathrm{I} \sqrt{3}-102690\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{\sqrt{120 \sqrt{\left(120 \,2^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}+\left(18 \sqrt{163}\, \sqrt{3}-294\right) 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}-1200 \,2^{\frac{1}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+26400}}{120}+\frac{\left(-49 \,2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}-200 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-2200\right) \sqrt{\left(120 \,2^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}}{648000}+\frac{\sqrt{6520 \,2^{\frac{1}{3}} \left(\sqrt{163}\, \sqrt{3}-53\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+3064400+\left(3586 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-36838 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}\, 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}{72000}-\frac{1}{2}\right)^{-n}+\left(\left(\left(\left(\left(\mathrm{I} \sqrt{3}-\frac{713}{6}\right) \sqrt{163}+\frac{2771 \,\mathrm{I}}{3}+\frac{1793 \sqrt{3}}{6}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(\left(-\frac{141 \,\mathrm{I} \sqrt{3}}{10}-\frac{47}{3}\right) \sqrt{163}+\frac{7009 \,\mathrm{I}}{30}+\frac{652 \sqrt{3}}{3}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{18745 \,\mathrm{I}}{3}+\frac{55 \sqrt{163}}{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(\left(315 \,\mathrm{I}-12675 \sqrt{3}\right) \sqrt{163}+31785 \,\mathrm{I} \sqrt{3}+256725\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(\left(-\frac{3015 \,\mathrm{I}}{2}+\frac{1491 \sqrt{3}}{2}\right) \sqrt{163}+\frac{60147}{2}+\frac{17115 \,\mathrm{I} \sqrt{3}}{2}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+48900 \left(\mathrm{I}-\frac{47 \sqrt{163}}{163}\right) \sqrt{3}\right) \sqrt{\left(-6 \sqrt{163}\, \sqrt{3}+98\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+40 \sqrt{3}\, \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+400 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-8800}+\left(\left(\left(-1225+\frac{595 \,\mathrm{I} \sqrt{3}}{3}\right) \sqrt{163}+\frac{101875 \sqrt{3}}{3}-10595 \,\mathrm{I}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(\left(-1228-\frac{331 \,\mathrm{I} \sqrt{3}}{3}\right) \sqrt{163}+\frac{15974 \sqrt{3}}{3}+1141 \,\mathrm{I}\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+\frac{1400 \sqrt{3}\, \left(\mathrm{I} \sqrt{163}-\frac{7661}{7}\right)}{3}\right) \sqrt{\left(40 \sqrt{163}\, \sqrt{3}-2120\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+22 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{163}\, \sqrt{3}-226 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}+18800}+\left(\left(-207900 \,\mathrm{I}+69300 \sqrt{3}\right) \sqrt{163}+2493900 \,\mathrm{I} \sqrt{3}-2493900\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+363816000+\left(\left(61290 \,\mathrm{I}+20430 \sqrt{3}\right) \sqrt{163}-102690 \,\mathrm{I} \sqrt{3}-102690\right) \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\sqrt{120 \sqrt{\left(120 \,2^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}+\left(18 \sqrt{163}\, \sqrt{3}-294\right) 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}-1200 \,2^{\frac{1}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+26400}}{120}+\frac{\left(-49 \,2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}-200 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}-2200\right) \sqrt{\left(120 \,2^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}}{648000}+\frac{\sqrt{6520 \,2^{\frac{1}{3}} \left(\sqrt{163}\, \sqrt{3}-53\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+3064400+\left(3586 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-36838 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}\, 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}{72000}-\frac{1}{2}\right)^{-n}+352080000 \left(\frac{\mathrm{I} \sqrt{120 \sqrt{\left(120 \,2^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}+\left(-18 \sqrt{163}\, \sqrt{3}+294\right) 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}+1200 \,2^{\frac{1}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}-26400}}{120}+\frac{\left(49 \,2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}+200 \left(98+6 \sqrt{163}\, \sqrt{3}\right)^{\frac{1}{3}}+2200\right) \sqrt{\left(120 \,2^{\frac{1}{3}} \sqrt{163}\, \sqrt{3}-6360 \,2^{\frac{1}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+56400+\left(66 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-678 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}}{648000}-\frac{\sqrt{6520 \,2^{\frac{1}{3}} \left(\sqrt{163}\, \sqrt{3}-53\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{1}{3}}+3064400+\left(3586 \,2^{\frac{2}{3}} \sqrt{3}\, \sqrt{163}-36838 \,2^{\frac{2}{3}}\right) \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}\, 2^{\frac{2}{3}} \left(3 \sqrt{163}\, \sqrt{3}+49\right)^{\frac{2}{3}}}{72000}-\frac{1}{2}\right)^{-n}\right)}{247920652800000000}\)

This specification was found using the strategy pack "Point Placements" and has 36 rules.

Found on January 18, 2022.

Finding the specification took 0 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 36 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{32}\! \left(x \right)+F_{33}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{32}\! \left(x \right) &= 0\\ F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{12}\! \left(x \right) F_{30}\! \left(x \right)\\ \end{align*}\)